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ABSTRACT OF THE DISSERTATION

A Modified Loop Transfer Recovery Approach

for Robust Control of Flexible Structures

by

Paul Andrew Blelloch

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 1986

Professor D.L. Mingori, Chair

A procedure is developed for dealing with performance and robustness

issues in the design of multi-input multi-output compensators for

lightly damped flexible structures. The procedure is based upon

representing errors in the plant design model as structured uncertain-

ties, and applying a modified version of the Loop Transfer Recovery

(LTR) design method. Real parameters errors such as frequency errors,

damping errors or modal displacement errors can be treated. The modi-

fied method may be implemented in either of two slightly different

forms_ both of which permit a controlled tradeoff between performance

and robustness.

xvii



I

I
i
I

I
I

!
I

I
I
I

I
!

I
i

i

i

I
I

The first approach is the main focus of the dissertation. It in-

volves adjusting the cost function in the regulator problem and the

process noise model in the estimator problem in a particular manner

which reflects the assumed structure of the modeling errors. Numeri-

cal examples dealing with the control of a large flexible space anten-

na with uncertain frequencies demonstrate that this approach repre-

sents a considerable improvement over standard LTR methods.

Convenient design parameters can be varied until a satisfactory com-

promise is achieved between performance and robustness.

The second approach is a variation on the first in that it uses a

similar procedure for adjusting the cost function in the (full-state

feedback) regulator problem. Instead of implementing the controller

with an estimator, however, an algebraic procedure is used to achieve

loop recovery with a compensator whose poles can be placed at arbi-

trary locations. This works for a single-input, multiple-output

plant, and results in a reduced order compensator. This approach is

also applied to the space antenna problem, and the results indicate

that while a satisfactory combination of performance and robustness is

possible, the robustness of the compensator is quite sensitive to the

pole locations selected.

xviii
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Chapter I

INTRODUCTION

As control theory develops, both the perfomance demanded and the size

and complexity of the systems that must be controlled is increasing

rapidly. An application in which this is especially evident is the

control of flexible structures, particularily large space structures°

These structures can be extremely complex and highly flexible. Furth-

ermore, performance demands may require that a large number of lightly

damped, possibly poorly modeled modes must be actively controlled.

The problem is far from trivial, and though it has fascinated a large

segment of the control system community for a number of years, no

universally acceptable solution has emerged. This dissertation pre-

sents a modified LTR approach for achieving robust control. This

approach is based on analysis of the problem from the point of view of

structured uncertainties. It is shown to produce produce considerable

improvement in robustness over the standard LTR approach.

Difficulties in the control of flexible structures arise at a num-

ber of different points. The first is in the structural modeling of

the system, and the selection of an appropriate reduced order model

for control design. This does not appear, however, to be a limiting

problem. Finite element methods, among others, have facilitated the

development of complex structural models, though these are difficult

to validate for structures which can be deployed only in a zero grav-

ity environment. An essential ingredient in these models is that they

must include some estimate of the model uncertainties. Model reduc-
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tion has received a great deal of attention, and a number of competing

methods are available. Most of these work with a state-space descrip-

tion of the system and many offer the advantage of working in a "modal

representation," enabling the selection of "important" modes. The

structural modeling and mode selection processes for a specific flexi-

ble antenna model will be discussed in the context of an example. For

the purposes of this dissertation it is assumed that the design model

has been extracted from a larger analytical model on the basis of some

modal selection scheme, and that some estimate of uncertainties (par-

ticularily in the modal frequencies of the reduced order model) is

available.

Once an appropriate (reduced order) model is chosen for control

design, a number of further difficulties arise. Most large space

structures are inherently multiple-input multiple-output (MIMO), indi-

cating that classical control methods are, in general, not applicable.

The control designer is then faced with an array of modern control

design methods. Two approaches that have become especially popular

are the optimal LQG approach which is a time domain method based on a

state-space description of the system, and the various polynomial, or

transfer function approaches, which deal in the frequency domain, more

in the spirit of classical control.

The LQG approach is very appealing. It allows the designer to spe-

cify a control objective in terms of a quadratic cost functional, and

then step back while the computer provides the "optimal" solution.

Any number of inputs and outputs are handled naturally and the solu-

2
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tion to the full-state feedback regulator is shown to have excellent

gain and phase margins [SA-4,LE-2]. On the other hand, the addition

of a state estimator (Kalman Filter) can produce arbitrarily poor gain

and phase margins. Furthermore, the entire LQG approach fails to deal

directly with one of the major issues of feedback control, the ability

to achieve perfomance specifications in the face of plant uncertain-

ties.

Polynomial approaches have become increasingly popular, especially

with regard to designing robust systems. This is because many const-

raints on the performance and robustness of the feedback system can be

stated directly in the frequency domain. Performance is usually

assured by maintaining high loop gains in frequency ranges where dis-

turbance rejection is important, while robustness with respect to a

special form of uncertainty is also a function of loop gain as indi-

cated in Chapter II. Furthermore, the entire approach is similar in

spirit to that of classical control, and provides a good "intuitive"

feel for feedback system properties. Classical control concepts such

as sensitivity, bandwidth, gain and phase margins, etc. are more appa-

rent in the polynomial or transfer function approach.

One approach which combines both LQG and transfer function methods

is Loop Transfer Recovery (LTR), originally suggested by Kwakernaak

[KW-I] and later extended by Doyle and Stein [DO-I,2]. Kwakernaak

derives a method to asymptotically recover the loop shape of a given

Kalman-Bucy Filter (KBF) at the plant output, by allowing the control

weighting in a specific LQR problem to approach zero. This offers the

3
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advantage of recovering the minimal sensitivity properties of the Kal-

man Filter. Doyle and Stein indicate that the dual to Kwakernaak's

approach, allowing the noise covariance in a KBF problem to approach

zero, asymptotically recovers the LQR loop shape at the plant input.

Both procedures will be referred to as Loop Transfer Recovery (LTR),

where Kwakernaak's approach [KW-I] recovers a loop shape at the plant

output, and is only valid when the plant has at least as many inputs

as outputs, while the approach of Doyle and Stein [DO-I,2] recovers a

loop shape at the plant input, and is only valid when the plant has at

least as many outputs as inputs. Both approaches require that the

plant be non-minimum phase and it is only in the case of square plants

that the designer has a choice of recovering the loop shape at either

the input or output _. Ref. [FR-I] discusses more fully some aspects

of examining the feedback loop at various points.

A number of papers on various applications of LTR have appeared in

the literature. The first to deal specifically with the problem of

flexible structures was Ref. [SU-I]. In this work the design model is

reduced to the three rigid body modes of the antenna, while all the

flexible modes are treated as uncertainties. This is a valid applica-

tion of LTR, but results in a very low performance control law, (This

point is discussed further in Chapter III). In fact, the resulting

control law indicates an open-loop bandwidth below 10 -3 rad./sec.,

* Margins at both the input and the output can be guaranteed simulta-

neously only when the inequalities o[I+K(s)G(s)]al and

o[I+G(s)K(s)]kl both hold [LE-I].
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where the first flexible mode is not encountered until approximately

.75 rad./sec.. This is a severe limitation since it is often neces-

sary for compensators to actively control frequencies which lie within

the control bandwidth. More recently, a compensator design for the

TRW experimental truss structure was presented in Ref. [0P-I]. In

this case a standard LTR design procedure with frequency dependent

weighting functions and colored noise was used. The results indicate

a robust design with reasonable performance characteristics. However,

robustness with respect to frequency errors was not specifically dealt

with. A number of other applications have also been reported in the

literature. A very recent one applies LTR to the control of turbo-fan

jet engines [KA-2,AT-I].

There are two primary motivations for the LTR method. The first is

performance, since disturbance rejection specifications can be met by

maintaining sufficiently high loop gains over a frequency band of

importance. The term performance will be associated with high loop

gains through out this dissertation The second is robustness. The

idea that loop recovery leads to robustness appears to be based on the

belief that an appropriate loop shape along with large gain and phase

margins is a guarantee of good robustness. Examples presented in this

dissertation demonstrate clearly that this is not the case. On the

other hand, loop revovery does appear to be an effective way to

achieve a level of nominal performance that is comparable to full-

state feedback. A primary goal of the present work is to develop a

controller design method which retains the desirable features of loop



recovery and also improves robustness. To meet this goal, a modified

LTR approach is developed. The modified approach contains a small

number of design parameters which permit the designer to trade off

performance and robustness in a controlled way. By this means it is

possible to generate a substantially more robust LTR controller with

very little reduction in performance. The major difference between

this dissertation and previous work is the emphasis on robustness with

respect to _arameter variations, in particular frequency errors. Pre-

vious applications of the LTR method either assumed uncertainties,

such a unmodeled dynamics, that are well represented by the unstruc-

tured uncertainty approach, or simply defined robustness in terms of

some general criteria such as gain and phase margins.

The properties of the modified LTR design method are demonstrated

by using the approach to design a high perfromance controller for a

flexible space antenna with uncertain modal frequencies. These are

poorly characterized by an unstructured uncertainty model. The system

is lightly damped and has more outputs than inputs. Since this is a

relatively common situation for flexible space structures, the case of

an excess of outputs over inputs will be emphasized. In particular,

the special case of 1-input and m-outputs, which, by reducing the loop

gain at the plant input to a scalar function, both simplifies the ana-

lysis and clarifies conceptual ideas, will be used extensively.

The first implication of the excess of outputs over inputs is that

the loop shape can be recovered only at the plant input, while a sec-

ond implication is that a number of extra degrees of freedom are avai-



lable. This motivates an alternate, algebraic design approach which

provides Loop Transfer Recovery with arbitrary compensator pole place-

ment and a reduced order compensator. It is shown than this approach

offers some advantages over standard LTR methods, but it is quite sen-

sitive to compensator pole location.

_The organization of the dissertation is as ; 11_o_ows. First the

question of robustness is discussed, paying particular attention to

some of the important modern robustness theorems that have appeared in

the last 10 years. The most important results relative to this dis-

cussion are representations of two types of plant uncertainty. These

are the unstructured uncertainties of Doyle and Stein [DO-l] and Leh-

tomaki [LE-1,2,3,4], and the corresponding structured uncertainties of

Doyle [D0-3,4,5,6,7]. When modeling errors are well characterized by

a single unstructured uncertainty robustness can be guaranteed by mak-

ing the minimum singular value of either the return difference or

inverse return difference transfer function matrix, large enough.

This leads to the idea of defining robustness in terms of loop shape,

and provides the motivation for loop shaping as a control design

method, and LTR as a particular approach to achieving some desired

loop shape. Using a simple one mode example however, it is found that

the unstructured uncertainty is far too conservative to treat poorly

modeled frequencies. It is concluded that in the case of a strict

parameter uncertainty such as a frequency error, robustness is not

necessarily determined by loop shape alone, since the system component

uncertainties cannot be accurately described in terms of unstructured
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uncertainties.

The next step in Chapter II is to discuss the structured uncer-

tainty, which promises to reduce the conservativeness of the unstruc-

tured approach [D0-3,4,5,6,7]. It does this by treating perturbation

matrices which are block diagonal, where each block corresponds to

either an unstructured uncertainty, or a real parameter variation.

The robustness of systems with structured uncertainties is defined in

terms of a parameter B. _ defines how large an uncertainty of a given

structure must become before it can destabilize the plant. In parti-

cular, if _ is less than one, the system is robustly stable, while the

distance of B from one indicates a stability margin with respect to

the structure of the uncertainty. Methods that choose a controller so

as to minimize _ are known as _-synthesis. These methods, however,

are closer in spirit to H'-optimization than the LTR methods consid-

ered in this dissertation. First the general case of a structured

uncertainty is discussed briefly and then the representation of the

problem for real parameter variations is discussed in greater detail.

This case has only appeared recently in the literature [MO-I,2]. It

is essential to take into account the constraint that parameter varia-

tions remain real whenever uncertain modes are close to the imaginary

axis. The reason for this is illustrated by the single mode example

discussed in Section 2.1, where it is indicated that a complex repre-

sentation of frequency uncertainty is conservative even in the case of

a single flexible mode. Therefore, even though the transfer function

for a flexible system can be separated into its modal components, any
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method which allows complex parameter variations in the individual

modes will still be conservative. Unfortunately, the real parameter

variation version of the structured uncertainty approach for a flexi-

ble system with uncertain parameters, does not lead to simple require-

ments on either the plant input or output loop gain, and therefore

does not directly provide useful information for an LTR design. How-

ever, the analysis of this problem from a structured uncertainty point

of view does result in a transfer function for which B is minimized to

achieve robustness. While B-synthesis problem is not the subject of

this dissertation, the method suggests that minimizing the 2-norm of

the same transfer function might improve robustness. This observation

is the key to developing the modified LTR approach which is the pri-

mary subject and contribution of this dissertation. When the required

modifications are implemented, one discovers that the LQG problem one

must solve to improve robustness is not necessarily the same one which

must be solved to achieve satisfactory performance. In general a

trade-off is required. This trade-off is explored in detail later in

the dissertation.

In Chapter IIIa description of the standard LTR method is given,

along with a discussion of some of its properties. Again, particular

attention is paid to implications for lightly damped, flexible struc-

tures. As expected, it is concluded that the LTR method does not

always guarantee a robust system, even if the corresponding full-state

feedback design is extremely robust. Thus, great care is required in

the design of robust compensators for lightly damped, flexible sys-



I

I
I

I

I
I

I
I

i
I

I
I

I
I

I

I
I

I
I

tems. This is a result of the previously noted conclusion that

robustness is not necessarily a function of loop shape alone. In Sec-

tion 3.3 an alternative algebraic approach to achieving loop recovery

is presented and the issue of existence of solutions is discussed.

Section 3.4 gives an overview of robustness problems associated with

the standard Loop Transfer Recovery approach and discusses some spe-

cific issues raised in Ref. [SH-I].

In Chapter IV the methods developed in Chapters II and III are

applied to a wrap-rib antenna model. The design goals are to achieve

robustness with respect to frequency uncertainty, and also maintain a

loop shape which represents a satisfactory level of performance. The

antenna model is chosen because it is much more sensitive to frequency

errors than other models we have tried. Particular emphasis is placed

on finding scalar parameters which allow the designer to control

trade-offs between performance and robustness. The results demons-

trate the effectiveness of the modified LTR approach for achieving a

satisfactory balance between performance and robustness.

The final chapter draws some important conclusions from the simula-

tion results and proposes a general approach to using LTR for the

design of robust control systems for non-square, lightly damped, flex-

ible structures.

Background information may be found in the appendices, including a

review of singular values, proofs of theorems, a discussion of numeri-

cal considerations in the application of the two LTR methods and a

i0
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listin E of model data for the wrap-rib antenna.
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Chapter II

ROBUSTNESS MEASURES FOR MIMO FLEXIBLE SYSTEMS

One of the major reasons for the application of feedback control, is

to minimize the effect of variations in plant dynamics (or equiva-

lently, plant frequency response) on the system performance. In this

context, two relevant notions of robustness with respect to i .+px_L_ unc-

ertainty are "robust performance" and "robust stability." Robust per-

formance refers to the ability of a plant to meet performance objec-

tives in the face of uncertainty, while robust stability simply

requires that the plant remain stable for all allowable plant varia-

tions. Only nominal performance and robust stability are considered

in detail in this dissertation. If the system is SISO, or if both

performance and robust stability are measured at the same point in the

feedback loop, then satisfying both nominal performance and robust

stability implies robust performance. In a more general case this is

not strictly true. Methods required to deal with the general situa-

tion are presented in Section 2.2. A detailed applicationof these

methods, however, falls beyond the scope of this dissertation. For

the remainder of the dissertation, the term robustness refers to

robust stability.

The basic work in single-input-single-output (SISO) feedback sys-

tems was done more than forty years ago by Nyquist, Bode [BO-I] and

their colleagues. The most important robustness result is the Nyquist

Stability Criterion, and the related concepts of gain margin and phase

margin. These margins specify, in an exact sense, how much the gain

12



I

I
I

I

i
I

I
I

I
I

I
I

I
I

I
I

I

I
I

and phase of the plant frequency response can vary separately before

the closed-loop system will go unstable. In particular the gain mar-

gin measures the amount by which the open-loop gain can be increased

without causing instability, while the phase margin measures the

amount by which the open-loop phase lag can be increased without caus-

ing instability. These provide an approximate measure of the close-

ness of the Nyquist plot to the -I point, thereby generalizing the

Nyquist Stability Criterion from a measure of absolute stability to

one of relative stability.

The purpose of this dissertation is to develop robust, high perfor-

mance control laws for large, flexible, lightly damped structures.

There are two aspects of these systems that cause some difficulty in

analyzing robustness properties. The first is their lightly damped,

flexible nature, which implies a highly oscillatory frequency res-

ponse, making concepts such as gain and phase margin much more diffi-

cult to interpret. This difficulty, however, can still be handled

within the context of classical control methods, provided sufficient

care is taken. The second difficulty proves to be more fundamental,

and stems from the existence of a number of interconnected inputs and

outputs. Since there is no longer one loop gain to be analyzed, clas-

sical methods cannot be applied directly. Furthermore, it has been

shown that analyzing each loop of a multiple loop system separately,

does not always give results that are valid for the interconnected

system [DO-l]. Fortunately the robustness of multivariable systems

has been studied extensively in the last ten years. It is the purpose

13
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of this chapter, to give a quick overview of the state-of-the-art in

the robustness of multiple-input-multiple-output (HIM0) feedback con-

trol systems.

An extremely general approach to MIMO robustness can be found in

the work of Zames [ZA-I,2] on cone bounded perturbations and Safonov

[_A-I.... ,2] on even more general _"°_"_h"_"_--_--_v--_. These results rely heav-

ily on the mathematical field of functional analysis and are applica-

ble to both non-linear and time-varying plants. The special case of

linear, time-invariant plants, however, can be dealt with much more

simply, and a number of more practical robustness theorems have been

developed. These theorems can be divided into two groups, paralleling

the two modern approaches to control theory mentioned in the last

chapter, i.e., frequency domain and time domain. The most popular

approaches to describing the robustness of linear, time-invariant HIM0

feedback control systems deal with a transfer function description of

the plant uncertainty. A particular representation is the unstruc-

tured uncertainty, which leads to conditions on various loop transfer

functions. This immediately implies that loop shape is the fundamen-

tal issue in robustness, and therefore provides a simple and clean-cut

case for the application of Loop Transfer Recovery.

The unstructured representation of plant uncertainty leads to con-

ditions on loop gain that will ensure robust stability. In this

approach the phase is ignored, sometimes leading to conservative

requirements on the loop gain. Some work on the "phase" of HIHO sys-

tems has appeared the in recent literature. [0W-I,P0-1,2,KO-I]. How-

14
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ever, the concept of phase is not easily extended from SISO to MIMO

systems and consequently these results have not proved to be espe-

cially useful in characterizing robustness. Therefore, just the

structured and unstructured representations of plant uncertainty will

be presented in detail.

2.1 Unstructured Uncertainty

Consider the simple feedback system illustrated in Fig. 2.1,

Rcs>__ q

F__ure 2.1.1MIMO Feedback System Configuration

where:

R(s) - Command Signal

K(s) - Compensator

U(s) - Control signal to the plant

G'(s)- True, possibly unknown plant, described by a nominal

plant, G(s), and some characterization of errors

Y(s) - Output variables (Measurements)

15
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Dropping the dependence on s, some transfer functions describing the

system can then be evaluated as follows:

I
I

I
I

Y = [(I+GK)'IGK]R = [GK(I+GK)'I]R

E = R - Y = (I+GK)'IR

U = [(I+KG)'IK]R = [K(I+KG)'I]R

Also define the following functions:

GK - Output Loop Transfer Function

(2.1)

(2.2)

(2.3)

!

!
I
I

KG

[I+GK]

[I+KG]

- Input Loop Transfer Function

- Output Return Difference

Input Return Difference

[I+(GK) "I] - Output Inverse Return Difference

[I+(KG) "I] - Input Inverse Return Difference

And make note of the following identities:

I [I+(GK).I]_I = GK[I+GK] "I = [I+GK]-IGK

I. [I+(KG)-I]-I = KG[I+KG] "I = [I+KG]'IKG

(2.4a)

(2.4b)

I

I
I

[I+(GK)'I] -1 + [I+GK] "I = I (2.5a)

[I+(KO)'I] "1 + [I+KG] "1 = I (2.5b)

The first two identities show that the inverse return difference is

simply the inverse of the closed loop transfer function. The inverse

I of the return difference is often called the sensitivity function

I
16
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S(s), while the closed loop transfer function is often called the com-

plementary sensitivity T(s). The second two identities show that the

sum of the sensitivity and complementary sensitivity functions is

equal to the identity. The implications of this fact, in terms of

fundamental limitations on design, are discussed in Ref. [SA-3].

Note that the output loop and input loop transfer functions and

related return differences are not in general the same for MIM0 sys-

tems, though they are for SIS0 systems. In fact, if the number of

inputs is not equal to the number of outputs, they will not even have

the same dimensions. This property affects the way in which an uncer-

tainty is described. In particular the true plant G'(s) might be

described in terms of a nominal plant G(s) in one of the following two

ways:

or

G'(s) = L (s)GCs) (2.6a)
o

G'(s) = G(s)Li(s ) (2.6b)

Lo(S) will have the dimension of the plant output, and can be consid-

ered an uncertainty acting at the output, while Li(s ) will have the

dimension of the plant input, and can be considered an uncertainty

acting at the input. In some cases a physical interpretation can be

attached to the use of either Li(s ) or L (s). For example if theo

errors are due to imperfect actuators L.(s) would give the appropriate
1

description, while sensor errors would be better described by Lo(S ) .

17
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On the other hand, when errors are due to uncertainties in the inter-

nal plant model the choice of L.(s) or L (s) is more arbitrary. In
l o

this case Lo(S ) would provide the most convenient error description

when the output loop shape is analyzed, since G'(s)K(s)=Lo(S)8(s)K(s),

while L.(s) would provide the most convenient error description when
l

the input loop is analyzed, since K(s)G'(s)=K(s)G(s)Li(s). The point

at which the loop is "opened" to examine robustness will therefore

depend on the way in which the error is described, and vice-versa.

For simplicity, only errors acting at the plant input will be consid-

ered here, but the results for errors acting at the output can be

easily found by replacing K(s)G(s) by G(s)K(s) in the theorems of the

following sections.

The unstructured uncertainty was introduced by Doyle and Stein

[DO-I] and by Lehtomaki [LE-1,2,3,4]. It is simply a single uncer-

tainty which can be given no more structure than a bound on its size.

For matrices, size is measured by singular values, which are discussed

in Appendix A. It is assumed that the reader is familiar with the

concept of maximum and minimum singular values as well as some of

their properties.

Consider the following two I possibilities for L(s) = Li(s):

Two other unstructured uncertainty representations are the additive

and subtracted representations, which are discussed in Ref. [LE-I].

These are, however, equivalent to the multiplicative and divided

disturbances respectively and will not be discussed here.

18
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L(s) = [I+Am(S)] (multiplicative uncertainty)

or L(s) = [I+Ad(S)]'l (divided uncertainty) (2.7b)

(2.7a)

In each case the perturbation can be bounded by a positive, frequency

dependent function: 2

Z[_m(S)] -<_m(S), _'[Ad(S)] < _d(S) (2.8)

The closed loop stability of the true system (KG'[I+KG'] "I) can be

determined by the multivariable generalization of the Nyquist Criter-

ion [RO-I]. This requires that the det[I+KG'], evaluated on the

standard Nyquist D-contour (denoted by SZ_R) , encircle the origin in a

counter-clockwise direction, as many times as there are unstable

open-loop poles of KG'. For most practical problems involving flexi-

ble structures, the only poles of G on the imaginary axis will be at

the origin, and there will be an excess of poles over zeros, implying

that limK(s)G(s)=0. In this case the Nyquist D-contour reduces to the
S_

imaginary axis, with the possibility of an identation about the ori-

gin, and s¢_ R can be replaced by jw. Under the assumptions that G and

G' have the same number of open-loop unstable poles, and that KG' and

2 Another method for bounding the uncertainties is the cone-bounded

perturbation [DO-4]. This essentially corresponds to a multi-dimen-

sional frequency dependent scaling of the problem. In the case of

structured uncertainties (Section 2.2), this scaling is important,

but for the unstructured representation it provides no further
information.
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KG have identical open-loop poles on the jw-axis we have the following

two results:

Theorem 2.1: (Multiplicative Disturbance) The closed loop system will

remain stable for all allowable perturbations iff:

"_[KG(s)(I+KG(s)) "I] < I/£m(S ) YsE_ R (2.9a)

or equivalently if KG is invertible:

__[I+(KG(s)) "I] > £m(S) _sz_ (2.9b)

Theorem 2.2: (divided disturbance) The closed loop system will remain

stable for all allowable perturbations iff both a) and b) are true:

a) L(s) has no zero or strictly negative real eigenvalues for any s¢_ R

b) _[(I+KG) "I] < I/£d(S ) _s_ R (2.10a)

or equivalently:

_[I+KG] > £d(S) _s_ R (2.10b)

A proof of the above results is given in Appendix B.

It should be noted that these are not conservative results, given

the error characterization of Eq. (2.8). In fact, if the above condi-

tions are not met, there exists a perturbation, Am(S ) or Ad(S), whose

maximum singular value lies below £m(S) or £d(S) respectively, which

will destabilize the system. The unstructured uncertainty, however,

2O
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can be unduly conservative in its characterization of error. If the

error is known to have some structure it is quite possible that the

Particular Am(S ) or Ad(S ) required to cause instability cannot occur.

A number of "structured uncertainty" approaches have attempted to take

advantage of some form of error structure, and these will be discussed

later, but first the results of the multiplicative and divided uncer-

tainties will be compared, and then a simple example which illustrates

the application of the unstructured uncertainty approach to a SISO,

lightly damped, flexible system will be presented.

One major difference between the above two results is the addi-

tional requirement for divided uncertainties, that L(s) have no zero

or strictly negative real eigenvalues for s_ R. This is needed to

[I+¢8d]-i remains continuous as ¢ varies from
insure that the function

zero to one, and indicates that Theorem 2.2 cannot guarantee robust-

ness in the case where phase is completely arbitrary. See Appendix B

and Ref. [LE-I] for further details. This places a limit on the situ-

ations in which a divided disturbance can be used to study robustness.

For most practical problems, however, the phase will be known to

within ±180" for some range of frequency, and both Theorems 2.1 and

2.2 are applicable in that range. When the error in phase is less

than 180 °, the system can therefore be made robust to multiplicative

uncertainties by maintaining a large inverse return difference, or

equivalently a small loop gain, while the same system can be made

robust to divided uncertainties by maintaining a large return differ-
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ence, or equivalently a large loop gain. The two representations

therefore imply opposite requirements for achieving robustness, and

together imply that a system can be made robust either by maintaining

very high loop gains, or by maintaining very low loop gains, while it

will be most sensitive to errors in the region of gain cross-over.

This is a familiar result from classical control, corresponding to the

fact that perturbations of the Nyquist plot far away from the -i point

will not affect stability. Unstructured uncertainties provide the

MIM0 generalization of this idea. One final note is that Eq. (2.5b)

indicates that the return difference and inverse return difference are

not independent, implying that a system cannot be made robust to both

multiplicative and divided uncertainties acting simultaneously at a

single given frequency.

The multiplicative uncertainty is most appropriate when dealing

with high freqeuncy errors where phase is completely unknown, while

the divided disturbance is most appropriate when dealing with low fre-

quency errors when some information on phase is available. Conse-

quently, the divided disturbance motivates high loop gains, typically

used at low frequencies, while the multiplicative disturbance moti-

vates low loop gains, typically used at high frequencies. It should

be emphasized that both disturbance models are unstructured, with the

only difference being that the phase cannot be completely arbitrary

for the divided disturbance.

A flexible structure with uncertain modal frequencies within the

system bandwidth must also have uncertain modal frequencies near
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cross-over. This implies that high loop gain cannot be maintained for

all frequencies and the divided uncertainty is not particularily use-

ful in this case. The unstructured uncertainty, when applied to

lightly damped flexible structures therefore implies that the loop

gain must be kept below some level, whenever poorly modeled frequen-

cies are present. To gain an appreciation for this limit, consider a

very simple SIS0 flexible model.

2.1.1 Example of a Multiplicative Unstructured Uncertainty Approach

Since the unstructured uncertainty approaches are generalizations

of classical SISO theory, they will work for more complicated systems

only if they work for a simple SISO system. With this in mind con-

sider a system with a single, underdamped, flexible mode whose gain

and damping ratio are known, but whose frequency is known only within

given bounds. Such a system might be described as follows:

t2 2

w0

G'(s) = s2+2_ ,s+_, 2 G(s) = s2+2_0s+w0 2j (2.11)

let
aw = (w' - WO)/W 0

then
Aws[(2 + Aw)s + 2_w']

Am(S) = s2 + 2_w's + w '2 (2.12)

and
(2+Aw) 2 + (2¢w') 2

IAm(JW)l = IAwl_ (w,_._2)2+ (z_w,)2w_ _Zm(W) (2.13)

This £m(W) is for one particular error in frequency (Aw), but Aw is
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actually only known to be within certain bounds. The correct £m(W)

would then take the worst case of the above bound for every possible

£w. A simple though naive algorithm to find £m(W) for a set of bounds

on Aw would, for every w, calculate Eq. (2.12) for a sufficient number

of _w's between the bounds, and then plot the worst case.

Fig. 2.2a illustrates the result of such an algorithm. In this

case w 0 = 1 rad/sec, _ = .01 and Aw is allowed to vary between -.I0

and +.i0. 201ogl0(i/£m(W)) is plotted, taking the worst case of 200

different Aw's between -.i0 and +.I0 at 400 frequency points between

.75 rad/sec and 1.25 rad/sec.

A computationally simpler approximation would be to consider only

the two worst cases of Aw, (Aw = -.i0 and Aw = +.I0). The result of

an algorithm that did this for the same number of frequency points is

plotted in Fig. 2.2b. The plots are similar, though the shapes vary

slightly between the limits on Aw. The second approach, might provide

guidelines for a first cut design, though it would not strictly guar-

antee stability by Theorem 2.1.

The function (i/£m(W)) places strict limitations on the bandwidth

of the system, since the closed-loop gain must fall below it. This

implies that the bandwidth is limited by the first time that (i/£m(W))

falls below 0 db. This occurs when £m(W) first becomes larger than I,

or when the errors in frequency response first rise above the nominal
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frequency response. For any real plant £m(W) will eventually rise

above I, since no model will be accurate over all frequencies. The

question in this case is whether £ (w) > 1 for w near the uncertain
m

natural frequency. In the cases

maX{£m(W)} = i0 at w=.9 and w=l.l.
w

plotted in Figs. 2.1.2a and b

Theorem 2.1 would therefore imply

that a SIS0 feedback system with a 1% damping ratio and 10% frequency

error would be required to have a loop gain that fell below -20 db

near the uncertain frequency, sharply limiting bandwidth and therefore

performance.

To get a rough idea of the extent of the limits imposed by Theorem

2.1, consider an approximation of Eq. (2.13). Assume that _ and Aw

are both small as compared to i, and that the function reaches a maxi-

mum at w = w' Then:

IA(jw) Imax = Ao,/¢ = JZm(W)max (2.14)

This indicates that relative frequency errors on the order of the

damping ratio will limit the system closed-loop bandwidth to the low-

est uncertain modal frequency. This is a relatively severe limita-

tion, since if the damping ratio in a particular mode is i_, a reason-

able value for flexible space structures, a I% frequency error might

destabilize a system whose bandwidth included that mode. To state

this differently, the only way to guarantee robustness would be to

require that the nominal loop gain cross the zero db line below the

first uncertain frequency.
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This limit seems somewhat overly restrictive, but to gain a more

concrete appreciation of the conservativeness of the unstructured unc-

ertainty for this particular example consider a simple constant gain

controller in the feedback loop. The closed-loop characteristic equa-

tion of the system is:

2
s + 2_u's + (l_k)u '2 = 0 r_ I

This is clearly stable for all k > -i, for all _ > 0 and for all w'

The bandwidth of the closed-loop system can therefore be increased

without bound, for arbitrary error in frequency and arbitrary non-zero

damping ratios, in conflict with the requirements implied by Theo-

rem 2.1. The reason that the unstructured uncertainty is so conserva-

tive, even for this very simple, SISO system, is that it doesn't take

into account any information concerning the phase of the system.

Essentially it defines limits on the gain error, while allowing com-

pletely arbitrary phase error. For the example just considered, the

phase error is uniquely determined by the gain error, so that the

exact phase shifts that would be necessary to destabilize the system

for a given gain shift can never occur. The unstructured uncertainty

of Ref. [DO-l] is therefore not a good characterization of error due

to uncertain frequencies in the modeled modes of a lightly damped,

flexible structure. Next apply Theorem 2.2 to the same problem.
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2.1.2 Application of Theorem 2.2 to the Example Problem -

In applying Theorem 2.2, the first step is to determine whether

L(s) is ever zero, or strictly negative on St_R, or equivalently

whether the phase of L(jw) ever reaches ±180". For the example:

u'=[(Wo'-Ua)(w"-ua)+4_2u w'w=+2_w ,2 -u'• .r_,.,_ = o [Wo(W "w=) (Wo='W=)]J]
_kJ_J

w_[(.'=-.2)2+4_2.'2.=]

(2.16)

Clearly, this expression is zero iff _=0 and is strictly neEative

and real iff _S0. Thus, Theorem 2.2 is applicable. 4 For the example

the divided disturbance is given as follows:

Aws[(2+Aw)s+2_Wo!]
&d(S) = sZ+2_WoS+Uo=

where Au=(u -w')Iu' (2.17)
o

IAd(JW) ] will reach a maximum near W=Wo, so:

IAd(JU)lma x = Aw/_ (2.18)

Theorem 2.2 therefore implies that whenever the frequency error is

on the order of the damping ratio, loop gain at that frequency must

lie above 0db, or equivalently, that sufficiently high gain will sta-

bilize the system. Theorem 2.1 indicates that the system can also be

robustly stabilized with sufficiently low gain. However, in the case

where Aw>_, Theorem 2.1 requires that loop gain remain below _/Aw,

Actually the phase of L(jw) asymptotically reaches ±180o, but it is

never exactly equal to ±180o.
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while Theorem 2.2 requires that loop gain remain above Aw/_ to guaran-

tee robust stability. Therefore the theorems indicate that there

exists an intermediate range of gains for which the system is not

guaranteed to be robustly stable. This is a conservative result since

it has been ascertained that the above example is robustly stable for

arbitrary frequency errors and for any positive feedback gain.

In conclusion, errors in the frequency of a lightly damped oscilla-

tor provide a highly structured parameter variation and the unstruc-

tured uncertainties of Doyle and Lehtomaki provide an overly conserva-

tive characterization of these errors. This implies that direct

application of unstructured uncertainties is not an appropriate

approach for determining the robustness of lightly damped, flexible

systems with poorly modeled frequencies.

2.2 Structured Uncertainties

As noted in the previous section, the unstructured uncertainty is

often conservative in the sense that it allows the plant perturbations

more freedom to destabilize the system than might be realistically

possible. For flexible structures with uncertain frequencies, this is

certainly the case. One attempt at correcting this deficiency is the

"structured uncertainty" approach also due to Doyle [D0-3,4,5,6,7].

The structured uncertainty leads to stability requirements that are

not a function of loop shape alone, and therefore LTR may not be an

entirely appropriate design technique for robustness enhancement.
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However, analysis of the structured uncertainty for a flexible

structure with uncertain frequencies does suggest a modified LQG/LTR

approach that results in improved robustness. To motivate this

approach, some aspects of the structured uncertainty error representa-

tion will be discussed briefly. For more details, the most readable

references are [D0-4,6,7].

2.2.1 Robust Stability with Arbitrary Structured Uncertainty -

For analysis of the closed loop system, the feedback loop (K) can

be absorbed into the nominal system. The uncertainties can then be

represented as an external loop. This is illustrated in Figure 2.2.1.

RC_
/

YCsY" _cs) CL(SI

Figure _'_'! Linea______rSystem with Model Uncertainty

\

Any linear interconnection of systems can be represented as shown in

this figure, though the required manipulations may not be obvious.

3O



I

I
I

i

I
I

I
I

I
i
I
!
I
I
I
I
I

Fortunately computer software exists to perform this task. As a

simple example, consider a multiplicative unstructured uncertainty

acting at a plant output, along with a divided unstructured uncer-

tainty acting at the plant input, as illustrated in Figure 2.2.2.

!

/

y(s]

/ \

Figure 2.2.2 Example Leading to Structured Uncertainty Representation

The matrices Wil , Wol , Wi2 and Wo2 are simply multi-dimensional,

frequency dependent weightings, such that o[AI]=O[A2]=I. While these

weightings were not incorporated in the case of an single unstructured

uncertainty (Theorems 2.1 and 2.2), they are necessary when consider-

in E the effect of a number of uncertainties acting simultaneously,

(also see Section 2.1, footnote 2). The weightings Wi3 and Wo3 are

selected such that the performance requirement is IIY(s)H2 _ 1 for all

[{R(s)[[2. Again, this is simply a frequency dependent scaling which
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allows the designer to compare performance requirements with the

effect of perturbations. The interconnection structure MCL can, in

general, be represented by an (n+l)x(n+l) matrix of transfer func-

tions I, where n is the number of perturbations. The i,jth element of

the matrix MCL is given by the transfer function from an input at the

location of the ith perturbation (or plant input) to an output at the

location of the jth perturbation (or plant output). For the example

illustrated in Figure 2.2.2 this is:

MCL =

-WoI(I+KG)'IKGWil -WoI(I+KG)'IKwi2

Wo2(I+GK)'IGWil Wo2(I+GK)-IWi2

Wo3(I+GK)-IGWil Wo3(I+GK)-IWi2

WoI(I+KG)-Iwi3

Wo2(I+GK)'IGwi3

Wo3(I+GK)'IGwi3

(2.19)

The matrix A (Figure 2.3) for this case is block diag.{AI,A2} with

norm bounded blocks. The "structure" in this perturbation is there-

fore that A must remain block diagonal, with norm bounded blocks

(unstructured uncertainties). This is a very specific structure,

arising when uncertainties in various components of a feedback system

are described by unstructured uncertainties. Real parameter varia-

tions, however, cannot be represented by this structure since they

i Here each element of MCL is itself a MIM0 transfer function since

each perturbation and each performance requirement may be repre-

sented by a MIMO transfer function, so MCL can be thought of as a

matrix of matrices.
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require the more restrictive structure that A be diagonal (rather than

block diagonal) with real entries. Therefore, to deal with real par-

ameter uncertainty, A must be allowed a more general structure. Con-

ceptually every linear-time-invariant plant uncertainty can be repre-

sented by a A of appropriate structure. Furthermore, nonlinear and

time-varying uncertainties can often be be bounded by appropriate

structures on A. Consequently, the following theorem considers the

general case where A can have any arbitrary structure 2.

Theorem 2.3: (Structured Uncertainty)

The system described in terms of Figure 2.3 will remain stable for all

pertubations A (_[A]<I) D of a given structure iff det[I-McL(JW)A]#0

for all allowable A (_[A]<I) with the given structure and for all w.

(Note that in the case where A represents a single unstructured uncer-

tainty, Theorem 2.3 reduces to the results of Theorems 2.1 and 2.2).

The det [I-McL(JW)A ] is essentially a multivariable Nyquist plot

for each allowable A. Since HCL(JW ) is stable by assumption (stabil-

ity of the nominal closed-loop system), the multivariable Nyquist

criteria is requires that det[I-HcL(JW)A ] not encircle the origin for

any allowable A. In particular, if there exists an allowable A such

that det[I-HcL(JW)A]=0 , then the system will go unstable for a set of

2 Currently, computational methods can deal with a number of different

structures on A, but the case of arbitrary structure is purely con-

ceptual.
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perturbations of slightly larger than A. On the other hand, if no

such A exists, then the system is stable for all allowable A's. Note,

that the above result does not imply that a Nyquist plot should be

checked for every allowable A, since there will, in general, be an

infinity of allowable A's. The only promise of Theorem 2.3 is that

given a structure for A, requirements on MCL(JW) can be found that

will ensure det[l-McL(JW)A]#O. In particular, in the unstructured

case, where A is simply norm bounded by one (i.e. c(A)<I), the

requirement is that _[McL(JW)]SI for all w. However, the more struc-

ture enforced on A, the larger _[McL(J_)] can become before robust

stability is violated.

The next step in the formulation of the structured uncertainty is

to define a function B(w) on the complex matrix MCL(JW), such that

B(w) is the inverse of the size of the smallest A of the correct

structure such that det[l-McL(JW)A]=O for some w. 3 This is usually

written in a norm notation (i.e., IIMCLIIB), though B(w) is not a norm,

and furthermore depends not only on MCL , but on the structure of A.

For stability though, it is required that IIMCLII<I for all w, or that

suplIMCLII <I. In a further abuse of notation this is often written as
w

IIMcLII_ again. So B is both a measure on MCL(JW ) at each frequency w,

3 Size is again measured by singular values, see Appendix A.
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and also a measure on MCL(JW ) as an overall function of frequency.

It should be emphasized that B simply defines the problem of find-

ing the smallest perturbation of a defined structure which destabi-

lizes the system. Fortunately methods for computing _ in some impor-

tant cases have been developed. In particular, the case where A is

block diagonal with non-repeated complex, norm-bounded blocks is well

understood. In this case an upper bound which is exact for three or

fewer blocks, and reasonably accurate for four or more, exists [D0-3].

This bound can be found by a gradient search on a convex function, or

it can be approximated by balancing the matrix M in the sense of

Osborne _ . Furthermore a lower bound which is exact for an arbitrary

number of blocks also exists. This bound, however, depends on maxim-

izing a function that is not necessarily concave, and a global solu-

tion is not guaranteed. Some important results concerning the effi-

cient calculation of the lower bound have appeared in Ref. [FA-I].

The case where a number of blocks depend on a single scalar 8

arises in the case of parameter variations. If the scalar is allowed

to be a complex number, this is a minor generalization of the above

results. If, however, the parameter is constrained to remain real, as

in the case of frequency variations, the corresponding scalar is also

constrained to remain real, and the problem becomes much more diffi-

4 This is a standard and computationally efficient technique used to

reduce the Frobenius norm of a matrix, typically used before solving

an eigenvalue problem.
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cult. Since, for the case of a flexible structure with uncertain fre-

quencies the real nature of parameter variations is essential, it will

be discussed in greater detail.

2.2.2 Structured Uncertainty for Real Parameter Variations -

The following results can be found in Refs. [MO-I,2]. First con-

sider the interconnection structure HCL , and corresponding perturba-

tion structure A arising from a real parameter variation. The state-

space description of the nominal plant is as follows:

(2.20)

Now consider m real parameter variations, such that the true plant is:

II _ _I m IAi BII II= + i=_ICi C i D
(2.21)

Assume that the problem is normalized so that the allowable range of

each c.i is Icil_l, and furthermore, that the ith state-space quadruple

[Ai,Bi,Ci,Di] is of rank k.. It can then be rewritten as follows:1

i D [=i_
(2.22)

where all ai2 have k columns and _il _i2 have k rows Though a' i ' i "

and _ are not unique the effect of making various choices has not been

examined in this dissertation. Eq. (2.22) then becomes:
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1 m i [_il _i2i= + E ci (2.23)

I The " " rconnection structure has the form

I back through the perturbation structure to u I, while

i It then follows that the state space realization of M

! -
Bll B12

I _1 (2.24)
e

Bml 0 0 Bm2

I _12 " am2
C D u

I ! !

The algebra can be verified by feeding the Yli s through the c.i s

!

i to the Uli s to get:

I

I,

I
= Ax + Bu 2 +

m

Eci[=il][[_il ]x + [Bi2]u2 ]
i=l

(2.25b)

I

I
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Y2 = Cx + Du 2 +

m

_.ci[-i2][[_il]X+ [Bi2]u2]
i=l

(2.25c)

which in turn is equivalent to Eq. (2.22). The corresponding pertur-

bation structure is:

A ..

ClIkl 0 ...... 0

0 C2Ik2

0 0 CmI k

(2.26)

where Ik. is the k.xk. identity matrix, and c. is a real parameter1 1 1
1

allowed to vary between ±i. This sets up the structured uncertainty

problem for real parameter variations, but does not solve it. Lower

and upper bounds on B for the above case do exist, and in the case

where these are close, they constitute a good approximation. The

development of a better test for _ in the real parameter variation

case is a current topic of research in the control community. One

promising method is described in Ref. [GA-I], though this is computa-

tionally difficult for a large number of varying parameters. When an

accurate and numerically efficient solution is found the problem can

be approached directly in terms of B, and _-synthesis can be used to

generate an "optimal," robust controller. For the purposes of this

dissertation, the problem statement for a flexible structure with unc-

ertain frequencies will be set up, and some conclusions will be drawn.

The exact solution of this problem, however, remains an area for
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future research.

It is recognized that the preceding discussion of "structured unc-

ertainties" is far too brief to properly cover the subject. Again the

reader is referred to Refs. [DO-&,6,7]. However, the information

given is sufficient to construct the perturbation model of a flexible

structure with uncertain frequencies. This, in turn, suggests an

approach to the LQG/LTR design procedure that improves robustness with

respect to frequency errors. The perturbation model is constructed in

the following section.

2.2.3 Application of Structured Uncertainty to Flexible Structures -

Consider a flexible structure with p-inputs and m-outputs,

described in a "modal" state-space representation as follows:

a

0 2 1 0 ........ 0

w -2_0 0 ........ 001 lwl 0 1 0 0

2
0 0 "w2 "2r'2w2 0 . 0

0

0 0 0 1

2

0 0 ...... 0 -w n -2_n_ n
m

(2.27a)
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C

B =

-0 . 0

ib11 b12

0 0

b21" b22

0 0

bnl. bnp

11 0 c12 0 Cln 0 I
0 Cm"z 0 c 0ml inn

(2.27b)

(2.27c)

Now consider the problem of designing a controller which maximizes

robustness with respect to variations in the imaginary parts of the

plant poles (variations in plant frequencies). The first step

involves using the methods outlined in the previous section to find a

state-space representation of the interconnection structure M for this

problem. Consider a perturbation corresponding to uncertainty in the

ith plant frequency (wi2) of amount A.. A. is the size of the maximuml 1

variation in w. 2 (i.e. A =.21 for a 10% allowable variation in wi)l ' i

The corresponding _il' _i2' Bil and Bi2 from Eq. (2.22) are not unique

since the quantity wi2D'1 can be arbitrarily factored between the _'s

and the B's, but one possibility is:

2(i-I)

=il = I 0 wi I o o ) =i2 = o
(2.28a)

Bil = ( 0 0 1 -w.A_i 0 1 0 0 ) Bi2 = 0 (2.28b)
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To illustrate this procedure, consider the simple one mode example

presented in Section 2.1 (Eq. 2.11). In this case the plant is

described by the following state-space representation:

= 0 i

LWo
o i:ti 0

"2_w 0 I w

0 ',-O-'J (2.29)

If the w02 term is allowed to vary by an amount A, then a state-space

representation of the interconnection structure M is given by

I Eq. (2.24):

ifr°
Y L Wo

!

I

I

-2_w 0 w0 w x

0 0 u 1

0 0 u

(2.30)

u I and Yl are the inputs and outputs respectively for the uncertainty

model. U2 and Y2 are the control inputs and measured outputs respec-

tively. Note that in this example _I is proprotional to B and 61 is

I proportional to C. This is a very special situation which will not be

true in the general case of n modes. The transfer function represen-

tation of M is:

I
I

I

-_°o'l {°'<'i1W02j /s2+2gtOoS+tOO 2 _U 2(s
(2.31)

By feeding Y1 through a constant c I (-l_ClSl) and back into UI, we

ascertain that the perturbed plant transfer function is

I

I
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=0

G'(s) = s = + 2_w0s 4-(l+Cl&)W02 (2.32)

as expected. In this case only the u02 term in the denominator of the

transfer function varies, while in Eq. (2.11) of Section 2.1 all terms

involving w 0 vary. However for the case of light damping and small Aw

the two problems are almost identical, so the same robustly stable

proportional feedback scheme suggested in Section 2.1 will be consid-

ered. The closed-loop transfer function for B-analysis is:

-au02
McL(s) =

s 2 + 2_WO s + (l+k)w02 (2.33)

is the inverse of the smallest size c I such that [I-McL(JU)Cl]=O.

In this case it reduces to the smallest size cI such that:

[2_Uo]JU + [(l+k+ClA)Uo 2 " u=]=O (2.34)

Since a real c I cannot affect phase, B=O for w>0 and B=A/(l+k) for

w=0. Since A<I and k>0, this indicates that the closed-loop system is

robustly stable for all frequency variations as expected. This should

not come as a surprise, since given the correct structure for the unc-

ertainty, g is never conservative. The only problem with using B is

that of defining the correct structure and calculating B for that

structure. Now consider the case where c I is allowed to be complex.

In this case cI can introduce arbitrary phase shift, and there exists
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a cI that satisfies Eq. (2.34) at every frequency _. In fact _ can be

found by solving Eq. (2.34) for c I and inverting the result:

AwN2

[MCL(JW)]B = (jw)2 + 2_Wo(jW) + (l+k)w02
(2.35)

[M_T(jW)] will reach a peak near w=_w_, so:

A

[McL]_ - 2_(l+k) (2.36)

This indicates that the system will not be robustly stable whenever

A>2_(l+k). This result is equivalent to Eqs. (2.14) and (2.18),

except that A is a variation in w02 , resulting in the factor of 2, and

the closed-loop, rather than the open-loop system is analyzed, result-

ing in the appearance of k. In general the structured uncertainty

approach analyzes the closed-loop system, while Theorems 2.1 and 2.2

give robustness results in terms of open-loop system parameters.

Eq. (2.36) is still conservative, and indicates that the conservative-

ness of the unstructured uncertainty approach for lightly damped flex-

ible structures is due to allowing the frequency variations to be com-

plex rather than real.

Now return to the original problem of synthesizing a robust cont-

roller for a plant with m uncertain frequencies. The problem is to

find a compensator K(s), for the system illustrated in Fig. 2.2.1,

such that the resulting closed-loop system will have IIMIIII<i. The
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I
system has no external inputs or outputs since these are not defined

_m in the problem statement. This is because no performance specifica-

tions have been defined. In a realistic problem, performance is gen-

m erally traded off against robustness, but the point of this example is

m to suggest a control problem that will improve robustness. The

state-space representation of M is:

I _ ,_ ol_. ool. x
m • •

= (2.37)

lYml I Bml 0 . 0 0 /UmlI Ly2) _c o . o o _u 2

I where A, B and C are given by Eq. (2.27) and the a.'s and B.'s for m
l l

I
I

I
I

uncertain frequencies are given in Eq. (2.28). Note that MII , MI2 ,

M21 and M22 all share the same state-space system matrix A. This is

generally true of the interconnection structures arising from the

structured uncertainty approach. Computationally this means that the

entire interconnection structure can be described by one state-space

representation.

I

I

The structured uncertainty controller synthesis problem suggested

by the intercorunection structure illustrated in Fig. 2.2.1 would be to

find a compensator K(s) which minimizes B on the resulting closed loop

!

I

transfer function. In the notation used in Refs. [D0-3,4,5,6,7], the

closed loop transfer function is denoted by F£(M,K), where

I

I
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F_(M,K)=[MII+MI2K(I-M22K)-IM21 ]. A direct application of this

approach would require the use of untested numerical methods. How-

ever, within the context of LQG control design, a possible related

approach is to minimize IIF_(M,K) II2. To accomplish this, formulate the

LQG probelm which consists of designing a full-state feedback control

!

!

!

law and KB-filter for the system with the following state space

description:

Q

x = Ax + Bu + [all , a21 , aml]W E[ww T] = I (2.38a)

y = Cx + n E[nn T] _ 0

so as to minimize the cost functional

(2.38b)

!

! 0

I where 8T = [_llTi B21TI

R _ 0. (2.39)

I BmlT] •

!

!

The control and estimator gains in this case approach infinity. This

R and E[nn T] are approaching zero because no constraints on input

actuator magnitude or measurement noise have been taken into account.

!

!

For a practical design, some penalty must be placed on control effort

and some finite measurement noise covariance must be assumed. Then

the problem then reduces to a standard LQG formulation.

! The power in the above observation, is that while the LQG method

i

!
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cannot directly take into account plant variations, Eqs. (2.38) and

(2.39) give some indication of how the state cost functional in the

LQR problem and the state noise covariance matrix in the KBF problem

might be chosen so as to minimize sensitivity of the closed-loop

dynamics to frequency variations. The result is somewhat counter-in-

tuitive, since it indicates that a high penalty should be placed on

the displacement of uncertain modes, while a natural inclination might

be to minimize the effect of control efforts on those modes, indicat-

ing a low penalty. It also indicates that the modal penalties in the

LQR state-cost matrix Q, should be proportional to the frequencies

squared. This suggests that a cost based on elastic strain energy

will improve robustness. Numerical simulation results on the antenna

model to be described in Chapter IV, support this notion. It was

found that LQR designs which weight elastic energy, result in consid-

erably more robust compensators.

It should be emphasized that formulating an LQG prolbem along the

lines just discussed is not the same as directly minimizing IIMIIII_, a

problem which is very difficult to solve. Instead, the difficult

problem is replaced by the by the alternate problem of minimizing

IIMIIII2. While reducing the 2-norm of a transfer function will usually

reduce the --norm, it may not reduce _. However, since the --norm is

always an upper bound on B, forcing it down will eventually force B

below one, and therefore ensure robust stability. Experience gained

by applying the LQG approach will be described in in Chapter IV, and

this experience suggests that solving the LQG problem defined by
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Eqs. (2.38) and (2.39) will improve the robustness of flexible struc-

tures with respect to variations in frequencies.

To reiterate, the suggested LQG problem incorporates the following

A

state cost matrix _Or, and state noise covariance matrix _Or:

Qr --

A:w:O 0

10 1 0 0

0 _ 2W 2 0

0 20 2 0

0 A_wz0

0 non 0

A

Qr -

"0 0 0 0

0 w12 0 0

0 0 0 0 0

0 0 0 _o2= 0

0

0 0
20

n

(2.40)

A realistic LQG design might balance robustness against performance

by weighting the sum of two terms in the LQR cost functional. The

first would weight the elastic strain energy, Eq. (2.40), while the

second would weight a performance objective such as RMS surface error

or pointing accuracy. This allows the designer to make a controlled

trade-off between robustness and performance.

An estimator design can be achieved by a number of methods. One

possibility would be to choose the process noise covariance defined by

Eq. (2.40), or perhaps balance this against a physically motivated

disturbance. Another approach would be to use an LTR design where the

columns of the B-matrix are used to weight the square of the modal

frequency. This would result in a process noise covariance of the

form qI(BBT+q2wwT), where:
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The results of the modified LTR compensator designs based on this

principle will be presented in Chapter IV. The rest of this chapter

is devoted to a very brief discussion of robustness results based on a

time-domain viewpoint.

I 2.3 Time Domain Approaches to Robustness

I

|
|

Some work has been done in characterizing the robustness of feedback

systems directly in the time domain. Typically these results are

defined in terms of interval matrices. An interval matrix is one in

which each element is known to lie in a specified interval. One early

result on the stability of interval matrices was published in

I

I

!

Ref. [BI-I]. This defined conditions for stability based on the coef-

ficients of the corresponding characteristic equation, which is an

interval polynomial. Unfortunately, though the results concerning

interval polynomials were correct, the extension of those results to

interval matrices were not, as evidenced by the counter-example of

I

I
I

Ref. [BA-I]. The original reference, however, led to a flurry of

results concerning the stability of interval polynomials

[KA-4,S0-I,BA-2] and at least one result on sufficient conditions for

the stability of interval matrices [HE-l]. Design methods based on

these results have appeared in Refs. [SO-2,3,EV-I]. While the results

I

!
I

are promising, and may be useful for simple problems, the correspond-

ing design methods are too cumbersome for practical implementation in
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realistic problems. Some related results have also appeared

[PE-I,YE-I,KH-I,HO-I]. Again, in the opinion of the author, the

results are either not general enough, or too cumbersome. The advan-

tage of the "structured�unstructured uncertainty" approach is that it

is both very general, and results in a single scalar measure of

robustness which is amenable to global minimization.

In conclusion, it is the opinion of the author that the current

robustness results based on a time domain representation of the system

are not sufficiently developed for application to the complex problem

considered in this dissertation. They will not be considered further.
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Chapter III

LOOP TRANSFER RECOVERY (LTR) CONTROL DESIGN

LTR is an appealing approach to control design for two basic reasons.

The first is that it can be used to recover the gain and phase margins

of a Linear Quadratric Regulator (LQR) at the plant input, or of a

Kalman Bucy Filter (KBF) at the plant output. This is sometimes

called robustness recovery [D0-2] or sensitivity minimization [KW-I].

These are, however, somewhat misleading terms since they suggest that

the loop recovered system will have the same robustness properties as

the full state feedback LQ regulator or the KB filter. This is not

generally trueas will be indicated more specifically later. The sec-

ond appeal of the LTR approach is its applicability to loop shaping as

a more general control design method. The idea of loop shaping is

most clearly spelled out in Ref. [DO-l], where it is pointed out that

a number of system properties, including performance, sensitivity,

noise rejection, "robustness" and control effort, depend on the system

loop shape (maximum and minimum singular values of the system transfer

function matrix). The LTR loop shaping approach involves first

designing an LQR loop or a KBF loop with desired characteristics, and

then recovering that loop shape by LTR methods. Again there is a dan-

gerous implication in the loop shaping approach, that all systems with

the same loop shape will behave identically. This is true for the

nominal plant, but when the plant parameters are perturbed, the two

loops may no longer be identical and the system response (and stabil-

ity) may vary considerably. In Chapter IV, a number of examples of
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systems with identical loop

characteristics will be given.

shape, but different robustness

For simplicity, the input loop recovery procedure of Doyle and

Stein [DO-I,2] will be considered, noting that output loop recovery

[KW-I] is simply its dual. After describing the procedure it will be

interpreted for SISO systems, and for ]-input, m-output systems° This

interpretation will lead to a polynomial (pole/zero cancellation)

approach to loop recovery. Finally methods for using the extra

degrees of freedom available in the loop recovery procedure to find an

"optimal" loop recovered system will be considered.

3.1 Input Loop Recovery

The LQR loop has excellent robustness properties. In particular an LQ

regulator with diagonal input weighting matrix R is guaranteed to have

atleast an infinite gain margin, a gain reduction margin of 1/2 and a

phase margin of ±60 °, simultaneously in all the feedback loops

[LE-I,2]. The idea of input loop recovery is to design an LQ regula-

tor with some loop shape and then use an asymptotic procedure to

design a KB filter that recovers that loop shape. Since gain and

phase margins are a function of loop shape, the output feedback sys-

tem, using a KB filter to estimate the plant states, will have the

identical gain and phase margins as the LQR loop. For this reason,

input loop recovery is sometimes called robustness recovery. This is

the point of view taken in Ref. [DO-2]. Another advantage of the loop
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recovery approach is that it is relatively simple to specify the LQR

loop shape at low frequencies, by carefully choosing the weightings in

the LQR cost functional [HA-l]. Loop Transfer Recovery (LTR) can then

be used to achieve the identical loop shape for an output feedback

system. This is the loop shaping control approach, and is the point

of view taken in Ref. [DO-l].

Performance specifications are usually defined in terms of errors

in the plant outputs for some set of disturbance inputs. In general,

the disturbance inputs may enter at points other than the plant input

or the plant output. The configuration presented in Ref. [DO-I], how-

ever, indicates disturbances acting at the plant outputs, as illus-

trated in Fig. 3.1.1. In this case the transfer function between D(s)

and E(s) is:

E(s) = [I + G(s)K(s)]'iD(s) (3.1)

() (s)

Figure 3.1.1 Output Errors for Disturbance Acting at Output

i

I

i
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This implies that the system has good disturbance rejection whenever

the output return difference is large, or equivalently whenever the

output loop gain is large. This is the motivation for defining per-

formance in terms of output loop gain. A motivation for considering

input loop gain to be an important performance specification can be

constructed by considering the transfer function from disturbance

inputs acting at the plant inputs to errors in the plant inputs. This

is illustrated in Fig. 3.1.2. In this case the transfer function bet-

ween D(s) and E(s) is:

E(s) = [I + K(s)G(s)]'ID(s) (3.2)

Des) E (s'_

!

|

I
i

I

i

Figure 3.1.2 Input Errors for Disturbance Acting a__tInput

This is a somewhat artificial performance specification, but it does

lead to requirements on the input loop gain. A third configuration

would have disturbances acting at the plant input and errors measured

at the plant output. This is a good model for a number of systems and

results in the following relationship between E(s) and D(s):
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E(s) = G(s)[l + K(s)G(s)]-iD(s) (3.3)

Since G(s)is fixed, this again indicates that disturbance rejection is

good whenever K(s)G(s) is large, suggesting high input loop gain.

Therefore, for the remainder of this dissertation, performance is mea-

sured by input loop gain. In particular, high input loop gain at a

frequency w indicates good disturbance rejection at that frequency,

while low input loop gain indicates poor disturbance rejection.

To see how loop transfer recovery works, consider a full-state

feedback control law, u=-Kx.

this system will be K(sI-A)'IB.

form,

The input loop transfer function for

Now consider a state estimator of the

= A_ + Bu -l-G(y - C_)

and a control law based on the state estimate _, u=-K_.

the compensator transfer function is,

(3.4)

In this case

K(s) = K(sI - A + BK + GC)-IG (3.5)

and the input loop transfer function for the output feedback system

is:

K(s)G(s) = K(sI - A + BK +GC)-IGC(sI - A)-IB (3.6)

To get loop recovery choose an estimator gain matrix G, such that,

K(sI-A+BK+GC)-IGc(sI-A)-IB _ K(sI-A)'IB (3.7)
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In Refs. [DO-I,2] it is stated that any Kalman gain matrix G which

asymptotically satisfies G _ qBW as q _ - will recover the LQR loop

shape. W is an arbitrary, symmetric, positive definite matrix, while

q is a large scalar parameter which is increased to achieve asymptotic

loop recovery. To demonstrate this result, note that the transfer

function between y and 9 in the state estimator can be written as fol-

lows,

A

y = (I + CTG)'IcIGy (3.8)

-I
where _ denotes (sI - A + BK)

nate representation of K(s):

This leads to the following alter-

K(s) = K[T - I(I + C_G)-Ic@]G (3.9)

which after some further manipulations can be rewritten as:

K(s) = KIG(I + C_G) "1 (3.10)

Now if G _ qBW as q _ -, then

K(s) -* KIB(C_'B) "I (3.11)

Using the identity, _B = @B(I+K#B) "1, where _ = (sI-A) "I, Eq. (3. ii)

becomes,

K(s) _ K@B(C@B) "I (3.12)

and,
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K(s)G(s) * K_B(C_B)-Ic_B = K_B (3.13)

This shows explicitly how loop recovery inverts the plant dynamics

from the left and replaces them by the full-state feedback dynamics.

So far there has been no requirement that K be derived from an LQR

problem, nor that the estimator be a KB filter. In fact any appropri-

ate method (e.g., pole placement) could be used to select the control

gains K, and any estimator (e.g., an observer) which asymptotically

satisfies G _ qBW and simultaneously stabilizes the plant can be used

to calculate the estimator gains G. However, the choice of an LQR

approach for finding K has the advantage that the resulting loop will

have desirable properties, and the use of a KB filter to recover that

loop shape guarantees a stable plant at every stage in the asymptotic

loop recovery procedure.

In using a KB filter for LTR, the designer is allowed to append

additional columns to the B matrix until the plant is square. In the

original formulation [DO-I,2] a square plant was required, but it has

since been shown [MA-I] that this is not necessary to achieve loop

recovery. The freedom to append columns however, will be retained in

this study for the purpose of examining variations in robustness

resulting from different choices in the appended columns. The only

requirement on these columns is that the resulting plant be minimum

phase. Once the system is "squared up," a KB filter is found, where

the measurement noise covariance N is an arbitrary positive definite

matrix, and the state noise covariance has the following special form,
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H = M + q2BwBT (3.14)
o

where M° is some nominal noise covariance, q is the parameter which

will be increased to achieve recovery and W is an arbitrary positive

definite matrix. Note that the B matrix in Eq. (3.14) includes the

appended columns, so the rank of BWB T can be as high as the number of

plant outputs.

To show that this KB filter will asymptotically recover the loop

shape consider the Riccati equation:

AP + PA T - pcTN'Icp + H + q2BwBT = 0 (3.15)
o

2
and divide by q :

A(P/q 2) + (P/qZ)AT - (G/q)N(G/q)T+ (Mo/q2) + BWB T = 0 (3.16)

Since lim(P/q2)=0 iff C(sI-A)'IB has no r.h.p, transmission zeros

q_-

[KW-I, p.307], the assumption of a minimum phase plant is required to

conclude that

-(G/q)N(G/q) T + BWB T _ 0 (3.17)

The KBF estimator gains G will therefore have the following asymptotic

property:

G _ qBW½TN -½ (3.18)
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Where T is an orthonormal matrix (i.e., TT T = TTT = I). The KB filter

asymptotically recovers the loop shape as q approaches infinity.

Next the SIS0 case will be examimed to gain a more intuitive under-

standing of the LTR procedure. One quick note, however, is that the

estimator gain matrix G may become very large before loop recovery is

achieved. _,is may cause some computational problems and may not pro-

vide the best solution for a robust compensator, as will be discussed

further in Section 3.4.

3.2 SISO Interpretation of Loop Recovery

The SIS0 loop recovery problem is as follows. Given a SIS0

G(s) = N(s)/D(s), find a proper (or strictly proper) K(s) = n(s)/d(s)

such that K(s)G(s) = G(s)K(s) = _(s)/D(s) for some specified _(s).

The obvious solution is to let n(s) = _(s) and d(s) = N(s)d£(s), where

d£(s) consists of enough poles to make K(s) proper (or strictly

proper), and these poles are placed far enough into the l.h.p, that

they do not significantly affect the loop shape in the design region.

This interpretation also clarifies the minimum phase condition, since

if G(s) is non-minimum phase, this procedure will result in a pole/

zero cancellation in the r.h.p., that will destabilize the closed loop

system.

The asymptotic LTR procedure does not calculate an exact pole/zero

cancellation, but achieves this cancellation asymptotically. It is
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clear, however, that it is possible to achieve loop recovery by

specifying a compensator that does achieve exact cancellation, without

going through an asymptotic process. In both cases the cancellation

will be close to exact before loop recovery is achieved, so it will be

assumed that it is exact.

This interpretation indicates the essential difference between the

true LQR loop and the LTR loop. While both loops may look identical

over any given frequency range, the LTR loop will contain a number of

hidden pole/zero cancellations. These cancellations do not show up

for the nominal plant, but as soon as the plant changes, they will no

longer be exact and the LQR and LTR loop shapes may be considerably

different. This is especially evident for lightly damped systems,

since the plant zeros in this case will lie close to the imaginary

axis. Very small errors in the plant zeros will therefore produce

very large errors in the LTR loop shape. It is because of this prop-

erty that an LTR design will in general not have the same robustness

characteristics as the corresponding LQR design.

3.2. i Some Comments on the MIM0 Case -

LTR is a more interesting and less obvious design procedure in the

HIMO case, but the same basic properties carry through. In this case

the designer would choose the following compensator,

K(s) = K_B(C#B)'I/dt(s ) (3.19)
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where d£(s) would have the same interpretation as the SISO case.

Eq. (3.19) can be rewritten by dividing out the common factor

det[sI - A] to get,

K(s) = [Kadj(sl-A)B][Cadj(sl-A)B]-I/d£(s)

(3.20)

where Kadj(sl-A)B is the MIMO generalization of _(s) and Cadj(sl-A)B

is the MIMO generalization of N(s).

One method for realizing LTR for square MIMO plants, involves

exploiting the eigenstructure of the plant. In Ref. [KA-3] it is

shown that an observer design which not only cancels the plant tran-

smission zeros, but matches specified eigenvectors, will recover loop

shape. The cancelling approach taken in this dissertation is somewhat

different.

For the special case of 1-input and m-outputs [Cadj(sI-A)B] will be

a square matrix where only the first column is fixed and the next m-i

columns are at the designer's discretion (within the constraint of a

non-minimum phase plant). Thinking again in terms of the SISO prob-

lem, this is somewhat like having an N(s) at the designer's discre-

tion, corresponding to some freedom in the placement of compensator

poles. Once the poles are picked, however, loop recovery will specify

the compensator zeros. Keeping this in mind an algebraic, direct

pole/zero cancellation, design of a LTR compensator for a 1-input,

m-output plant will be considered.
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3.3 Algebraic Loop Recovery

As indicated in the previous section, loop recovery can be achieved

for a SISO system by defining a compensator that exactly cancels the

plant zeros and replaces them by a set of "optimal" zeros correspond-

ing to the LQR loop. For the case of a 1-input, m-output plant, a

similar procedure can be carried out, but now the designer has a set

of free design variables. This freedom can be used in a variety of

ways. Some possibilities include choosing a minimum order loop recov-

ery compensator or specifying the location of the compensator poles.

Here a minimal order compensator for which the compensator poles can

be chosen arbitrarily will be considered. In this case a simple set

of linear equations is solved to find the coefficients of the compen-

sator numerator polynomials, such that loop recovery is achieved.

A 1-input, m-output plant and compensator will have the following

special form:

g2 (s )N2(s)

GCs) = = _ .

(s N'Cs)

/D(s) (3.21a)

K(s)=[kl(S) k2(s) ... km(S)]=[nl(s) n2(s) ... nm(S)]/d(s)

(3.21b)

The input loop transfer function will be:
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K(s)G(s) = _.Ni(s)ni(s)/D(s)d(s ) (3.22)
i=l

To achieve loop recovery it is necessary and sufficient that:

m

K(s)G(s)= i=_INi (s)ni(s)/D (s)d(s)=_ (s)/D (s)d£ (s) =_ (s)/D(s)
(3.23)

where _(s) is the numerator polynomial for the LQR input loop. d£(s)

is again a set of poles required to maintain a proper (or strictly

proper) compensator, where those poles are kept sufficiently far out

in the l.h.p, so that they don't significantly affect the loop shape

in the design region. Then d(s)=dc(S)d£(s), where dc(s ) must be can-

celled out by the input loop numerator. Once the compensator poles

are selected, the following equation must be solved to find the com-

pensator numerator polynomials:

m

E Ni(s)ni(s) = _(S)dc(S) (3.24)
i=l

To find the minimal order compensator satisfying Eq. (3.24), let

n_ deg(_(s)} n c= , = deg{dc(s)}, n£ = deg(d£(s)}, nN = max[deg(Ni(s)} ]

and nn = deg{ni(s)}" The degree of the left side of (3.24) will be

nN + nn, while the degree of the right side of (3.24) will be n_ + nc,

so the first requirement on n is that:
n

nN + nn = n_ + nc (3.25)
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The second requirement on n is that there must exist enough degrees
n

of freedom to satisfy Eq. (3.24) for arbitrary _(s)Dc(s ) . The number

of free parameters is m(nn+l), while the number of polynomial coeffi-

i cients that must be satisfied is n_+nc+l , this implies that:

I m(nn+l) = n_ + n + 1
c

(3 o_
o_v 2

! Combining Eqs. (3.22) and (3.23) gives the following result for n :
n

I n = (nNl(m-l)) - 1 (3 27)
n

!

!

For a strictly proper compensator, the order of the compensator is

n c + n£ = nN/(m-I ) . So a 1-input, 2-output plant has a strictly

proper loop recovery compensator of the same order as the maximum

g

!

!

degree of the plant numerator polynomials, while a 1-input, 3-output

plant has a loop recovery compensator of half that order, etc.. This

approach therefore leads to lower order compensators than the asymp-

totic, observer based approach described in the previous section. In

fact, as m increases, the order of the compensator can become very

! small, while still achieving loop recovery.

!
Once the order of the compensator and the location of the compensa-

tor poles are chosen, the compensator numerator polynomials are found

!

!

by the solution of a set of m(nn+l ) linear equations.

compensator numerator polynomial be written as follows:

Let the ith

!

!
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ni(s)__ = n. s
l,n n

+ ... + n. is + ni, i,0
(3.28a)

and similarily let the ith plant numerator polynomial be:

N. (s) = N. s
1 l,n_

+ ... + N. is + Nx, i,0
(3.28b)

Then the equations can be written in the following matrix form:

Sn=d (3.29)

where,

S "

NI,0 0 ...... 0 ..... Nm, 0 0 ...... 0 "

NI, 1 NI, 0 ...... 0 ...... N Nm 0m,l ,0 .....

NI,nN NI,nN-1 ....... Nm,nN Nm,nN-1 ....

0 NI,nN ......... 0 Nm,nN. .....

. . + • . . .o . . . . . . °

• ... ..... ..,.. .

0 0 .... NI,nN ..... 0 0 ... Nm,nN

(3.30a)

n = [nl, 0 ... n l,nn n2, 0 ... n2,nn ...... nm, 0 ...
n ]T, (3.30b)
m,n

n

T

d = [ d o ..... dn_f+nc] , (3.30c)

and d._ is the ith coefficient of _(S)Dc(S ) . The above algorithm is
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easily implemented on digital computer whenever a unique solution to

Eq. (3.24) exists, or equivalently whenever the matrix S is non-singu-

lar. The following two paragraphs describe in greater detail the con-

ditions under which S is non-singular.

The matrix S is similar in structure to a Sylvester matrix used to

determine the coprimeness of two polynomials [KA-I,CH-I], so it is

reasonable to expect that the conditions for S to be non-singular

would be related to the coprimeness of the N.'s. In fact a necessary
1

condition for a unique solution to exist is that there exist no ak(s )

and bk(S), such that deg{ak(s)} , deg{bk(S)}Sn and,n

Ni(s) ak(s) m-I

Nj(s) - bk_' l<i#j<-m' k=l,..., Ei=l
(m-i) (3.31)

The index k simply counts the number of possible combinations of n.
l

and n. taken 2 at a time from a collection of m. To show this result,
3

assume that there exist ak and bk satisfying the above properties.

Then the equation

m

i=l
E Ni(s)ni(s) = 0 has the nontrivial solution given

by ni(s)=Nj(s ) and n'(s)='Ni(s)3-- - - with all other ni's=0. This implies

that Eq. (3.24) has no unique solution. There are two cases in which

the necessary conditions would not be satisfied. The first would be

if there exists a pair, Ni(s ) and N.(s) both with degree less than orJ

equal to nn. In this case let al(S)=Ni(s ) and bl(S)=Nj(s ) and the
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necessary conditions are violated. Note that nN_>nn, but that n N is

the maximum degree of the N. 's, and some N. might have a degree con-
l l

siderably less than nN, so this case is a real possibility whenever

the degrees of the plant numerator polynomials vary considerably. The

first necessary condition is therefore that no two plant numerator

polynomials may have degree less than or equal to n . The second case
n

would be where an N. failed to have a factor of degree n which was
l n

coprime with every other N.. Incidentally, if the condition on the
1

degree of ak and b k were changed to deg{ak(s)}<deg{ni(s)} , then (3.31)

would be identical to the requirement that all N.'s be coprime.
1

Therefore, coprimeness of all the N.'s is not a necessary condition,
1

though the result is similar.

For the case of m=2 these conditions are also sufficient since the

existence of a non-unique solution to Eq. (3.24) immediately implies

that there exist ak and b k with the correct properties. For the case

of m>2 the sufficient conditions do not depend only on properties of

the N.'s taken two at a time but are simply that Eq. (3.24) have a1

unique solution. To show that the necessary conditions are not also

sufficient in this case consider the following simple counter-example,

where m=3, nN=2 and n =0. Eq. (3.24) has a unique solution iffn

(s+al)(S+bl)n I + (s+a2)(s+b2)n 2 + (s+a3)(s+b3)n 3 = 0 (3.32)

66



I
I

I

I
I

I
l

I

I
I
l

I
I

I
l

I
l

I
l

has only the trivial solution, nl=n2=n3=0. Consider the case where

a.=-b, for i=1,2,3 in which case the following solution exists:
1 1

n 2 = (alZ-a32)/(a3Z-a22)nl , and n 3 = (a22-a12)/(a32-a2=)nl

for abitrary n I. In this case none of the N.'s are necessarily1

coprime, nor do any have degree less than nn, but a unique solution to

Eq. (3.24) does not exist. The only reliable test for sufficiency in

the case of m>2 is to check the non-singularity of the matrix S.

3.4 Robustness of LTR Designs

Perhaps the primary conclusion concerning the robustness of LTR

designs to plant parameter variations depends upon the relationship

between loop shape and robust stability implied by Theorems 2.1 and

2.2. Specifically, if model errors are accurately described by

unstructured uncertainties, then LTR methods can be used to ensure

that the conditions of Theorems 2.1 and 2.2 are met, thereby guaran-

teeing robust stability. This constitutes the ideal case for applying

Loop Transfer Recovery, since specifying constraints on the loop shape

is a necessary and sufficient condition for robustness. On the other

hand, some model errors are not well described by unstructured uncer-

tainties. In particular frequency errors in the model of a lightly

damped flexible structure fall into this category (see Section 2.1),

as do most cases of strict parameter variations. In this case Theo-
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rems 2.1 and 2.2 give sufficient but not necessary conditions for

robust stability, and a design based upon constraining loop shape on

the basis of unstructured uncertainties will be conservative, result-

ing in low performance. In the case of lightly damped structures the

implied constraints on loop shape would require that uncertain flexi-

ble modes not be actively controlled (again see Section 2.1). There-

fore, the robustness of designs which actively control flexible modes

cannot be analyzed by examining loop shape alone. In fact, for a

given loop shape, a whole family of LTR designs may exist, where the

robustness of these designs varies. In conclusion, the application of

LTR methods to lightly damped structures with uncertain frequencies

cannot be blindly approached in terms of conditions implied on the

loop shape. A major emphasis of the current study has been to iden-

tify conditions which are important. These results will be illus-

trated by the examples presented in Chapter IV.

The next observation concerns the fact that LTR designs rely on a

series of pole/zero cancellations, as noted in Section 3.2. Whenever

these cancellations occur near the imaginary axis a small perturbation

in the plant, resulting in a small shift of the plant zero, will cause

a very large variation in the open-loop frequency response. It would

therefore be reasonable to expect that an LTR design which achieves

fewer pole/zero cancellations near the imaginary axis will be more

robust than one that achieves more. One way to reduce the number of

plant zeros, and therefore the number of cancellations, is to add mea-

surements. A second order flexible system, with m-inputs and m-dis-

68



I

l
I

I

I
I

l
I

I
I
I

I

I
I
I

I

I
I

I

placement outputs, can have at most (n-2m) transmission zeros [ED-I] i

Remembering that in the asymptotic LTR approach, each additional mea =

surement entails an additional artificial input, this implies that

every measurement removes a pair of transmission zeros. In the alge-

braic approach, additional measurements are used to reduce the compen-

sator order, so it is unclear whether any robustness improvement might

result.

A method for shifting the cancellations away from the imaginary

axis in the asymptotic approach would be to use the extra degrees of

freedom available in the choice of artificial inputs to shift the

plant transmission zeros to the left. One option for doing this is to

use a non-linear programming approach as described in the previous

section. The results of this approach will be presented in Chap-

ter IV. It shoud be noted that this idea is also the motivation

behind the algebraic LTR approach, which allows the designer to place

the pole/zero cancellations as far into the left half plane as

desired.

Another comment on the robustness of LTR designs refers to issues

raised in Ref. [SH-I], dealing specifically with the robustness prob-

lems associated with any compensator design that incorporates very

high estimator gains. Asymptotic LTR designs can result in extremely

high (on the order of 106 or higher) gains in the estimator Kalman

* For velocity outputs the maximum number of finite transmission zeros

is (n-2m+l)
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gain matrix G. Two difficulties are pointed out. The first involves

the case where a plant perturbation changes the structure of the plant

transmission zeros at infinity. This is a perturbation that affects

the excess of poles over finite transmission zeros 2. An example in

which this occurs for a realistic flexible system is as follows: Con-

sider the system illutrated in Fig. 3.4.1, consisting of two disks (of

inertia i), stacked one on top of the other, connected by a rod (of

length I) which acts as a rotational spring (of spring constant 1/2).

The input is a torque about the lower disk. The nominal output is the

rotation of the top of the rod (equal to the rotation of the upper

disk). The nominal transfer function is:

G(s) = - 1/2
s2(s=+l ) (3.33)

An LQR design which minimizes the mechanical energy, plus the rotation

of the lower disk squared, plus the control input squared, results in

the following control gain vector (in modal coordinates):

K = [ 1.0000 2.0555 1.6124 0.6325 ] (3.34)

An asymptotic LTR design can be achieved by setting the process noise

covariance equal to (IxI012)BBT, resulting in the following Kalman

Filter gains:

2 Note that this is not the same as the finite transmission zeros

added when neglected dynamics are appended to the design plant. In

this case the number of poles increases along with the number of

transmission zeros, indicating that the excess does not change, and

the structure of the zeros at infinity therefore does not change.
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Figure 3.4.1 Two Disk System

I

I

I

S "

i 98255.0
I000000

98116

995170

(3.35)

This design is relatively robust with respect to frequency variations

(withstands ±30% errors in the flexible frequency), but consider an

I

I

error corresponding to a manufacturing defect which places the rota-

tion sensor at a point E below the top disk. The true transfer func-

tion would then become:

I ' = _s_+I/2
G (s) s2 (sZ+l) (3.36)

I Therefore, while the nominal plant has no finite zeros, the true plant

I

I
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has a pair at ±I-i/2¢, satisfying the conditions referred to in

Ref. [SH-I]. The asymptotic LTR design defined by Eqs. (3.34) and

(3.35) will be unstable for ¢>0.04, 3 corresponding to finite zeros at

±3.54j or lower on the imaginary axis. This might be a realistic

robustness problem in some applications, but it can occur only under

very special circumstances. In particular, for any square flexible

structure with displacement outputs, the maximum number of finite

transmission zeros is (n-2m) [ED-I]. Therefore, if the nominal plant

has this maximum number of transmission zeros, no perturbation in

plant parameters can result in the conditions required by Ref. [SH-I]

for robustness problems.

In conclusion the robustness problems associated with LTR control

exposed in Ref. [SH-I] depend on a nominal plant which is chosen such

that there exists a perturbation in plant parameters which will

increase the number of finite transmission zeros by atleast 2. This

possibility can always be ruled out by ensuring that the nominal plant

has the maximum possible number of finite transmission zeros, which

will be the case in most practical problems. In particular the

antenna model studied in this report satisfies the condition of always

having the maximum number of transmission zeros, and the designs pre-

sented in Chapter IV are therefore not affected by the robustness

problems exposed in Ref. [SH-I].

3 It will also be unstable for c<-O.Ol, but this corresponds to a mea-

surement location above the disk and is not physically realistic.
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The second observation in [SH-I] is that, due to the very high

gains involved, a small error in the realization of the compensator

could destabilize the system. The authors suggest that a compensator

be realized directly from the transfer function K(sI-A+GC+BK)'IG.

This, however falls outside the realm of robustness dealt with in this

dissertation and will not be discussed further.
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Chapter IV

EXAMPLES AND RESULTS

Rather than continue an abstract discussion of the application of LTR

to the control of flexible structures, the concepts will be illus-

trated via a specific example. This is the control of a large flexi-

ble antenna, which will be presented in detail.

This chapter is organized as follows. First the antenna and

related control problem are described (model data is listed in Appen-

dix D). Next the structural modeling problem is presented, resulting

in a modal description of the antenna. The sequence in which modes

are retained for a reduced order model is motivated by approximate

balanced singular values [BL-I,GR-I]. These provide an approximate

measure of a mode's importance in the input-ouput map (transfer func-

tion) of the system. After selecting a sequence of modes, the ques-

tion of compensator order is addressed. The compensator order is

increased until the open loop frequency response of the reduced order

compensator in series with the full-order plant model converges. This

indicates that the reduced-order compensator approximates the "opti-

mal" --dimensional compensator. Next, the robustness of various LQR

designs (with a nominal LTR estimator design) are compared. It is

indicated that a tradeoff between robustness and performance can be

controlled by the choice of an appropriate Q-matrix in the LQR design

method. After an LQR design which offers both satisfactory robustness

and satisfactory performance (with a nominal LTR estimator design) is

found, variations on the estimator design are made to further improve
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robustness, without sacrificing performance. It is shown that adding

appropriate process noise to the KB-filter problem can result in

improved robustness. Again a tradeoff is involved between robustness

and performance, where in this case performance is related to the

recovery of high loop gain at low frequency. The final section pre-

sents results of the algebraic LTR procedure.

4.1 Antenna Model

The antenna is a wrap-rib design, approximately 180 feet in diameter,

consisting of a central hub containing two orthogonal torque inputs,

surrounded by eight equally spaced ribs connected by a flexible mesh.

The term wrap-rib means that the ribs are initially wrapped around the

hub, and then released during deployment to achieve the full antenna

shape. The antenna configuration is illustrated in Fig. A.l.l. A

complete list of the model data can be found in Appendix D.

Though the antenna has two control inputs, symmetry can be used to

divide the problem first into a semi-circle with one control input,

and then, finally into a 90" sector with one control input. The 900

sector is illustrated in Fig. 4.1.2, and all results will be based on

this model.

The system is modeled by a component mode method, i.e., mode shapes

of the beams and the mesh sections are found separately, and the

"modal" representations are then connected to form the 90 ° sector.

Modal data, including frequencies, modal input influence coefficients,

75



!

!
Figure 4.1.1 Wrap-Rib Antenna Model

and modal output influence coefficients are listed in Appendix D.

!

!

Damping is assumed to be visco-elastic (i.e., the damping matrix is

proportional to the stiffness matrix)*, but the model allows different

damping coefficients _ for the beam and the mesh portions of the sector

!

!
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Figure 4.1.2 Antenna Quadrant Model

model. This implies that damping is added at the component mode

stage, and furthermore that the damping matrix, after combining the

beam and mesh component mode models and calculating the overall modal

representation, will include off-diagonal terms. The final antenna

model, in a second-order modal reprensentation, will have the follow-

ing form:

I Visco-elastic damping implies that the damping ratio of a mode

increases in proportion to the frequency of that mode. Higher fre-

quency modes will therefore be more highly damped. This is a real-

istic situation for most materials, particularily in the higher
modes.

2 The damping coefficient is a scalar number which multiplies the

stiffness matrix, resulting in the damping matrix.
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(4.1)

where_ 2 is the diagonal matrix of the natural frequencies squared,

while D is symmetric, positive-semidefinite, but is diagonal only in

the case when the damping coefficients in both the beams and the mesh

are identical. The particular model studied in this dissertation has

higher damping in the mesh, and the damping matrix is therefore not

diagonal, though the off-diagonal terms are in general an order of

magnitude smaller than the diagonal terms. The entire damping matrix

is listed in Appendix D.

The control problem involves maintaining antenna shape and pointing

accuracy in the face of external disturbances. These disturbances

might arise from environmental effects such as solar winds or gravity

gradients, or they might arise from induced motion on the antenna,

such slew maneuvers or moving parts. Since only a subset of the

antenna modes are controllable from the torque inputs, a rigorous way

of viewing the problem is to consider disturbances acting only at the

plant inputs. This guarantees that all modes which are excited by

disturbances are also controllable, and therefore stabilizable.

Motion in the uncontrollable modes is allowed to decay as a result of

damping in those modes. It should be noted that this is the best that

can be done without the addition of further actuators. The antenna

model is not meant to illustrate every problem in the control of a

large, flexible structure, but it does include many of the fundamental

aspects, with a model of sufficient complexity to provide some real-

ism.
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The wrap-rib antenna has been a primary focus of this research.

Simpler models, including series of connected masses and springs, as

well as a beam/hub model have also been studied, but the difficulty in

achieving robust control designs has been much greater for the antenna

sector model. From the point of view of control design, the important

aspect of this particular model is that it is difficult to control

robustly, and therefore poses a challenging problem.

The number of available measurements (or plant outputs) is not

necessarily fixed. However, there must be at least one measurement

relative to inertial space to ensure that the rigid body mode is

observable. This measurement is provided by a rotation sensor colo-

cared with the hub torque input. To effectively control the shape of

the antenna, measurements on the antenna surface must also be taken.

The present work assumes that these measurements are at the tips of

the two beams as illustrated in Fig. 4.1.2, and are relative to the

central hub position. The C-matrix for these measurements is listed

in Appendix D. For the examples presented in this dissertation, only

the measurement at the tip of the vertical beam will be used. The

reason for this is that for the reduced order model used in the con-

trol design, the two tip measurements are not independent, and a mea-

surement of the second tip displacement therefore provides no further

information to the compensator. To see this fact consider the follow-

ing argument. The complete mathematical model of the antenna sector

includes symmetric beam modes (the two beams move together in the same

direction) and asymmetric beam modes (the motion of one beam exactly
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opposes the motion of the other). With no mesh, the asymmetric modes

are uncontrollable, and even with the mesh they are only very slightly

controllable. These modes were therefore neglected in the mathemati-

cal design model, since they do not have much affect on the control

problem. This, however, implies that in terms of the mathematical

design model, the two beams will always move together, and the mea-

surements at two tips will he linearly dependent upon each other.

This points to an important consideration in determining the indepen-

dence of measurements. The fact that measurements are independent for

a physical system or even for some mathematical model does not imply

that they are independent for every possible reduced order mathemati-

cal model. The two tip measurements are clearly independent for the

overall mathematical (and the physical) antenna model, but due to the

exclusion of asymmetric modes, they are not independent for the

reduced order mathematical design model studied in this dissertation.

The independence of measurements is especially important in the alge-

braic design method, since linearly dependent measurements will usu-

ally result in a singular matrix S in Eq. (3.30) (see Section 3.3).

This means that no solution to the minimal order algebraic loop trans-

fer recovery compensator exists, unless one of the measurements is

neglected, or the compensator order is increased until the matrix S is

of sufficient rank.

The result that the two beam tip measurements are not independent

also indicates that if a third measurement is taken it should be at a

location other than the tip of the second beam. Possibilities include
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a point near the center of the beam or a point on the mesh. Though

the symmetry of these locations is not as appealing, the corresponding

measurement will provide the controller with additional information on

the state of the reduced order antenna model, whereas the second beam

tip measurement does not.

While using a second tip measurement provides no useful information

to the controller, this does not mean that all further measurements

are useless. It does indicate that a third measurement should be

taken at an alternate location, such as an intermediate point on the

beam or a point on the mesh. The effect of alternate measurement

locations has not been studied in this dissertation.

4.2 Selection of Reduced Order Model

It is relatively simple to produce a mathematical model of any desired

dimension for a given flexible structure. Using the component mode

method, the dimension can be increased both in the finite element mesh

used to generate the component modes, and also in the number of compo-

nent modes used to construct the full structural model. Large order

models of flexible structures are therefore available, but there are a

number of reasons why reduced order models are desired. The first is

that the computational complexity of both the control law and the

manipulations required to synthesize that control law are dependent on

the model order. This implies that the use of large order design

models will both complicate the design process and result in exces-
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sively high order implementations of the control law. The second and

perhaps more fundamental limitation is that linear models based on

simplifying structural approximations, such as the Bernoulli-Euler

assumption, cantilevered joints, etc., decrease in accuracy with the

number of modes. This means that large mathematical models may not

accurately reflect the actual physical system beyond the first few

modes.

On the other hand, a model which is too simple can result in poor

performance or even instability when the resulting compensator is

applied to the "true" full-order plant. An example of this effect is

spillover, where control effort spills over to unmodeled flexible

modes, so as to drive them unstable. It is clear therefore that a

good design model for a flexible structure must contain the minimal

amount of information necessary to describe the "important" dynamics

of that structure. Furthermore, the model order is a function of per-

formance demands. If performance requirements are modest, a simple

model may suffice. However, if high performance is a required, a more

complex model will be needed. Therefore, a model reduction scheme

must take into account both the sequence in which dynamics are added

to the model and also the relationship between perfomance and model

order.

One traditional approach to model reduction for flexible structures

is modal truncation. The most basic version of this method retains

all modes below a prescribed frequency (dependent on system bandwidth)

and neglects all modes above this frequency. This works well for sim-
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ple structures, but in a more realistic situation a number of low fre-

quency modes may be almost uncontrollable or unobservable. In this

case the lower frequency modes may be less important than some higher

frequency modes which are highly controllable and observable. This

naive modal truncation approach might therefore result in the reten-

tion of many more modes than necessary. An alternate approach is the

method of balanced realizations [MO-3], which neglects states on the

basis of their importance in the input�output map (transfer function)

of the system. However, the state-space reqpresentation implied by

the balanced realization method may not be physically meaningful,

sometimes resulting in a loss of insight into the problem. Fortu-

nately, in the case of a lightly damped flexible structure, the modal

realization is almost identical to the balanced realization

[GR-I,BL-I]. In this case an approximate balanced singular value can

be associated with each mode. For the modal representation given by

Eq. (4.1), with p-inputs and m-outputs, this is:

2 0

4(bil2+bi2 z+ • +hip )(Cli2+c2i2+ +c 2)
o = ml
i 4D.. (4.2)

ii

where bij is the i,jth element of B, cij is the i,jth element of C and

D.. is the ith diagonal element of D. The importance of a mode is
Ii

therefore proportional to its input and output coupling, while it is

inversely proportional to damping and frequency. This provides an

intuitively pleasing measure of modal importance which is indicative

of the effect of that mode on the plant transfer function.
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The approximate balanced singular values for a 32-mode model are

listed in Appendix D. These are derived from a model which originally

had 63-modes, of which 31 were approximately uncontrollable, corres-

ponding to assymmetric motion of the beams as discussed in the previ-

ous section. The 32-mode model constitutes the evaluation or "truth"

model of the system. One argument that this is a large enough model

for evaluation is that it is significantly larger than the model used

for control design (8-modes).

The next step in determining the reduced order design model is to

choose the model order. Two different approaches can be taken. One

is to ensure that addition of the neglected modes will not destabilize

the system. This can be done by treating neglected modes as an

unstructured uncertainty and then applying Theorem 2.1. This is the

approach taken in Ref. [SU-I]. However it does not address the issue

of performance. The approach taken in this dissertation is to con-

tinue adding modes until little further change in the compensator

design is observed. One measure for this is to examine the functional

gains. This method treats the convergence of the LQR and KBF problems

separately. A variation on this method which fits well into the con-

text of loop transfer recovery is to examine the loop gain as the

model order is increased. This gives a measure on the performance of

the overall compensator, and provides a simple but accurate test of

the relationship between desired performance and required model order.

Consider a series of compensators applied to the full-order

(32-mode) plant. The control design objective is identical for each
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compensator in the series, but the number of modes in the design model

(corresponding to the order of the LQR and KBF problems) is increased

until the resulting loop gain stops changing significantly. This pro-

cess is illustrated in Figs. 4.2.1 - 4.2.4, where 4, 6, 8 and i0 mode

versions of compensator design # 4.3.3e are applied to the 32-mode

plant model. There is a relatively large change from 4 to 6 and from

6 to 8 modes, but little change from 8 to i0 modes. This indicates

that a compensator based on an 8-mode model will approximate the

--dimensional compensator for design # 4.3.3e. Since the other com-

pensator designs presented in Sections 4.3 and 4.4 place less emphasis

on the higher modes that # 4.3.3e, they will also converge before

8-modes.

It was found that robustness of a compensator based on 8-modes

applied to a 32-mode plant is essentially the same as that of an

8-mode compensator applied to an 8-mode plant. In particular,

design #4.3.3e has the same robustness properties when applied to the

32-mode model as it does when applied to the 8-mode model. This is

because the convergence of the compensator implies that the addition

of further modes has little effect on the control problem. All

robustness tests will therefore be based on an 8-mode compensator

applied to an 8-mode plant, thereby reducing computational cost.
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4.3 LQR Design Problem

The first step in a Loop Transfer Recovery (LTR) control design is the

choice of a full-state feedback control law, or equivalently the

matrix K of control gains. The matrix K can be found by a number of

methods, including pole placement, but, perhaps the most common is by

solving a Linear Quadratic Regulator (LQR) problem. The statement of

the LQR problem is as follows:

Given _ = Ax + Bu (4.3)

Minimize the following cost functional:

J = [(xTQx + uTRu)dt

0
(4.4)

where Q is symmetric, positive semi-definite and R is symmetric, posi-

tive definite. The solution to the problem, for full-state feedback

is:

u = -Kx (4.5)

where K = R'IBTp and P satisfies the following Riccati equation:

PA + ATp - PBR'IBTp + Q = 0 (4.6)

There are a number of appealing aspects of the LQR approach,

including guaranteed gain and phase margins _ , the ability to shape the

loop gain at low frequencies [HA-l] and the computational simplicity
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of the approach. The designer simply has to choose the Q and R

matrices and let the computer do the rest.

For the antenna problem, the input is a scalar, so without loss of

generality R can be replaced by i. The problem then reduces to find-

ing a Q matrix of the following form:

Q = qcQo (4.7)

where qc is a scalar parameter which is increased to increase system

performance (and loop gain), and Qo is a matrix which specifies the

form of the cost weighting on the states. There are a number of bases

for choosing Qo" One might wish to achieve a particular loop shape,

or a particular closed loop pole configuration. Ideally, however,

there exists a physically meaningful objective function which can be

expressed in the form of Eq. (4.4). Examples of such functions

include the mechanical energy of the system, the pointing error, or

the RMS error of a surface or signal. Another basis for selecting Qo

might be to achieve satisfactory robustness. In particular, an analy-

sis of the flexible structure control problem with uncertain frequen-

cies presented in Section 2.2.3 suggests that a Qo matrix which

weights strain energy will improve robustness.

3 This constitutes a large part of the appeal of the LTR control

design approach
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For any realistic design, a number of factors will have to be

traded off. For the purposes of this dissertation two factors will be

considered. The first will be performance, represented by either RMS

error or hub pointing error. The second will be robustness with

respect to frequency errors. The examples will illustrate this

trade-off between robustness and performance.

Full-state feedback designs are inherently robust, not only in

terms of gain and phase margins, but also with respect to frequency

errors. This is because full-state feedback provides the exact dis-

placement and velocity of every mode in the control problem, indepen-

dent of frequency errors. Given this information, practically any

matrix of control gains will provide a robustly stable feedback sys-

tem. In particular, the full-state feedback versions of every LQR

design presented in this dissertation is stable for -99% to +100% fre-

quency variations _. Therefore, to examine the effect of varying LQR

designs it is necessary to choose a fixed estimator design. The esti-

mator design which is chosen is the solution to the KB-filter problem

with a measurement noise covariance of one, and a process noise covar-

lance given by:

4 A
Q = IxI09(B*B T) + ixl0 (Qr) (4.8)

4 However, this does not imply that the LQR design has little effect

on robustness. In fact, the way estimates of the modal displace-

ments and velocities are used, has a large effect on the robustness

of the resulting compensator. This will be clearly illustrated by

the examples presented later in this section.
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_here Qr =
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The form of Qr is suggested by Section 2.2.3 to improve robustness

with respect to frequency errors. This is also estimator design

# 4.4.4b presented in Section 4.4, where the details of a number of

varying estimator designs will be discussed. This choice results in

relatively robust compensators, while achieving reasonable loop recov-

ery.

In order to balance the effect of performance vs. robustness con-

sider an LQR cost functional of the following form:

J = S [qc(qcl[QRM S] + qc2[Qr]) + u2]dt
0

(4.9)

The parameters in the LQR design are qc, qcl and qc2. qc is an ove-

rall weighting, while qcl can be thought of as a weighting on perfor-

mance, and qc2 can be thought of as a weighting on robustness. The

form of Qr is motivated by the structured uncertainty problem pre-

sented in Section 2.2.3. Again it should be emphasized that the

robustness results are not for full-state feedback, but are for a

fixed estimator design.

The control designs are presented in groups. Each group corres-

ponds to increasing one parameter while keeping all others fixed.
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Each group is given a design number and the individual elements are

labeled a,b,c etc.. Loop gains, as a rough indication of performance,

are presented. As indicated in Chapter III, disturbance rejection is

related to high loop gain. In particular, high loop gain at a fre-

quency w reflects good disturbance rejection of signals at that fre-

quency. The locus of closed loop poles is also presented to indicate

the relative control effort applied to the various modes.

The issue of verifying stability robustness is not a trivial one.

The basic question is under what types of modeling errors will the

closed-loop system first go unstable. In the notation of Section 2.3,

this can be represented by B, the inverse of the smallest size A of a

given structure which destabilizes the system. Methods for addressing

this problem are beginning to appear in the literature. One approach

determines upper bounds on _ by representing errors as circles in the

complex plane [MO-I,2]. Another finds lower bounds based on a gradi-

ent search method which constructs destabilizing perturbations [FA-I].

A third seeks to find exact non-conservative bounds, but at present

the method is computationally inefficient [GA-I].

Application of these methods to the problem considered in this dis-

sertation is non-trivial, due to the large number of varying parame-

ters and the large number of designs to be checked. As an approxima-

tion, two tests of stability robustness are presented. In both cases

the open-loop plant frequencies are varied while other parameters are

held fixed. While only frequency variations are considered, we have

found that feedback control systems for lightly damped flexible struc-
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tures are more sensitive to frequency errors than other parameter var-

iations.

The first robustness test involves determining the maximum increase

and decrease in frequencies for which the system remains stable when

all flexible frequencies are shifted uniformly in the same direction

_ow _a_A_wld_h designs are stableby the indicated percentage. Some I _ ,A,. +

for arbitrary increases in frequency. In this case stability is

checked for up to a 100% increase. This rough check offers a simple

and computationally efficient measure of the effect of stiffening and

softening the structure, but does not consider the situation where

frequencies can shift in different directions. The second test mixes

the direction of frequency shift by looking at the vertices of the

parameter space for a maximum variation in the frequencies 6. For m

uncorrelated varying frequencies the parameter space is an m-dimen-

sional hypercube, so for each frequency variation 6, 2 m vertices must

be checked. For seven varying frequencies this is 128 stability

checks. To simplify the computation only the first four frequencies

are varied. Variations of the last three are found to have little

effect and are all set to -6. Furthermore the cases where all fre-

quencies decrease and where all frequencies increase has already been

checked, so only fourteen corners are needed. The results are indi-

cated by a percentage, corresponding to the largest 6 for which the

system remains stable at all its corners, and also the direction in

which the system first goes unstable. The direction is presented as a

string of four +'s and -'s where a + indicates increase of the corres-
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ponding frequency while - indicates a decrease. While the first

robustness check ensures that natural frequencies do not cross, the

second allows this possibility. In particular, a 46% increase in the

lowest natual frequency (6.951 rad/sec) combined with a 46% decrease

in the second natural frequency (18.940 rad/sec) will result in two

open-loop poles with identical imaginary parts. Since the real parts

of the poles are not varied the poles will never lie on top of each

other. A 32% increase in the second natural frequency along with a

32% decrease in the third will result in the same phenomenon as will a

24% increase in the third and a 24% decrease in the fourth. The case

where natural frequencies actually shift relative position may be

unrealistic and this should be kept in mind when interpreting the

mixed frequency variations. These two checks do not guarantee that

the system will remain stable for all frequency variations less than

or equal to 6, but they do provide a good measure of robustness.

Gain and phase margins for the designs are also presented. The

gain margin is the negative of the gain at -180" phase cross-over.

Since the phase of the following designs only crosses -180" at one

point, the gain margin is unambiguous. The phase margin is the dis-

tance of the phase from -180" at 0db gain cross-over. For some of the

designs, gain crosses 0db at a number of points. In this case the

phase margin is taken as the smallest of the phase margins at the var-

ious gain cross-overs. The purpose of listing gain and phase margins

is to examine the relationship, if any, between these margins and

robustness with respect to frequency errors.
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4.3.1 Weighting on RMS Surface Error -

For an initial test simply weight the RMS surface error, while

placing no emphasis on robustness. In this case qcl = 1.0, qc2 = 0.0

and qc is varied from .01 to i00.0. Loop gains for qc = .01, 1.0 and

100.0 are illustrated in Figs. 4.3.1 - 4.3.3.

Table 4.3.1 Design Sequence 4.3.1 (qcl=l.0, qc2=0.0, increase qc)

Design # qc Uniform Frequency Mixed Frequency GM PM

Shifts Shifts

4.3.1a) .01 -13% to +100% 13% .... 56db 65"

4.3.1b) .I -12% to +100% 12% .... 51db 64"

4.3.1c) I. -14% to +48% 14% .... 44db 66"

4.3.1d) I0. -17% to +35% 16% -+-- 36db 65"

4.3.1e) i00. -20% to +26% 18% -+-- 26db 68"

As indicated by the figures, performance, as measured by low fre-

quency loop gain, increases as qc is increased. Fro qc =.01, gain at

.I rad/sec is approximately 33db and practically no control effort is

applied to the flexible modes. For qc=100.0, gain at .i rad/sec is

approximately 72db and significant control effort is applied to four

flexible modes. Unfortunately none of the designs is robust, and

increasing RMS weighting seems to increase sensitivity to frequency

errors. Again this is not surprising since no weighting on the

_obustness term is included. It is interesting to note that this

design is sensitive to decreases in frequency, even for very low per-

formance. This is because a 50% decrease in frequency brings the

first flexible mode into the region of gain cross-over where the sys-
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tem is very sensitive to errors in frequency response.

The locus of closed loop pole locations for design sequence 4# 4.3.1

is illustrated in Fig. 4.3.4. The plot scale includes only frequen-

cies below 70 rad/sec, corresponding to the rigid body mode and the

first four flexible modes. This scale provides a good illustration of

the relative control effort applied to the modes° In particular,

Fig. 4.3.4 indicates that weighting RMS surface error emphasizes cont-

rolling the rigid body mode. The real part of the closed loop poles

for the rigid body modes lies to the left of the first two or three

flexible modes. This relationship will become more clear as more

robust designs are examined.

| COMPENSSTED LOOP QE= I0.00000
D m,_FIS _ 0C O. O)

H HOOESO IO] I
fl _ c esOOESe 0C] l.O000
-" _ COB O.008_I 102 ,a
" _. CON 0.0019 0C2 O.0000

X03 0

a ............ _ ................................... BS.1... O..I)Dnn
R_ O.000 l

Frequency (rad/sec)

Figure 4.3.1 Loo_ Gain for Design # 4.3.1a

96



I

I

I s COMPENSATED LOOP OE= I0.00000

d .._Rs 2 oc _.oo ]
,._ g MOOES8 [0) ! [

I _ _ c HOOESO QCI 1.0000_ COB o.oo3q zo2 _ 1
co_ o.oos9 ec2 o.oooo]

zoa o [
| oca o.oooo!
_._ RSZ o.oooo

I "_ ns2 o.oooz j

I I

I

I
' _0" Ir t 4 4 J_61%OP ._ i ,I 4 i_it6_O' _ i 4 4 i_6't_Oe Jt _ 4 t _'_di_ tff

I Frequency (rad/sec)

Figure 4.3.2 Loop Gain for Design # 4.3.1c

I
COMPENSATED LOOP QE= lO.O0000

i =:" ,..s2 oc ,oo._o
,_ fl HOOES8 IO) [

| _ C HOOES8 OC) 1.0ooo
i _ coe o.ooa, zoa

i _ cc_ o.ooz9uc2 o.oooo
103 o

It _ oca o. oooo
zi_ as] o.oooo

RS2 O.O00l

I ;
I ;

t

I '
Frequency (rad/sec)

! Figure 4.3.3 Loop Gain for Design # 4.3.1e

I

!
97



I

I
I
I
I
I
i
I
I
I
i
I
I
I
I
I

l
I
I

OESIGN

KETs

[] OC = 0.01

OC ! 0.10

A OC l.O0
OC 10.00

+ OC 100.00

- 5.00

SEQUENCE L_.3. 1

v

I I I

-12.00 -9,00 -6.00

REAL PAR T

i- ¢ ;_

I

-3.00

¢D

E3
C:)

-E3

O
(:D

(J'l
-(:D

O
(:D

-<

:D
OCO
0..-- 4

-.o
o

o

0._

Figure 4.3.4 Closed Loop Regulator Poles for Design Sequence # 4.3.1

98



I

i

!

i

I

!
I
I

I
I
I

I
I

I
l

I

I
I

I

4.3.2 Weighting on Pointing Error -

Another possible control objective is to minimize pointing error.

Therefore consider the case where qcl weights the hub pointing error.

Pointing error is measured directly by the hub rotation sensor, so the

appropriate weighting matrix is cITCl, where C 1 is the first row of

the C matrix. Again qcl = 1.0, qc2 = 0.0 and qc is increased, this

time from 100.0 to 1,000,000.0.

Table 4.3.2

Design #

Design Sequence 4.3.2 (qcl=l.0, qc2=0.0, increase qc)

qc Uniform Frequency Mixed Frequency GM PM

Shifts Shifts

4.3.2a) I00.

4.3.2b) i000.

4.3.2c) I0000.

4.3.2d) I00000.

4.3.2e) I000000.

-22% to +100% 22% .... 63db 65 o

-16% to +100% 16% .... 58db 650

-15% to +100% 14% --+- 52db 63 o

-20% to +66% 19% ---+ 43db 5_ a

-35% to +53% 32% -+++ 31db 55 o

ClTC 1 are approximately four orders ofNote that the elements of

magnitude lower than those of the weighting matrix QRMS This results

in lower control gains for the same qc, as indicated in Figs. 4.3.5 -

4.3.7. The results of parameter variations, however, are still simi-

lar. In particular the designs are not very robust. The locus of

closed loop pole positions, illustrated in Fig. 4.3.8 also indicates

that this control applies relatively less control effort to the flexi-
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I indicates increasing robustness with decreasing gain and phase margin,

illustrating the lack of correlation between actual robustness and the

I margins. For the rest of the dissertation it will be assumed the con-

I trol objective is to minimize RMS error, so qcl will weight RMS error

in all remaining cases.
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4.3.3 Designs with Increased Robustness -

The results of Section 2.2.3 suggest that increasing qc2 for a

constant qcl should improve robustness. Note that some weighting on

qcl must be included since no strain energy is associated with the

rigid body mode. An LQR problem which weights only qc2 applies no

control effort to the rigid body mode and this results in an unstable

closed-loop system. Design sequence # 4.3.3 lets qc = 1.0, qcl = 1.0

and increases qc2 from 1.0 to I0,000.0. The loop gains for qc2 = 1.0,

I00.0 and i0,000.0 are illustrated in Figs. 4.3.9 - 4.3.11. The

robustness results are presented in Table 4.3.5.

Table 4.3.3

Des ign #

Design Sequence 4.3.5 (qc _l.0, q cl=l'0, increase qc2)

qc2 Uniform Frequency Mixed Frequency
Shifts Shifts

GM PM

4.3.3a) i. -15% to +48% l&% ---+ 44db 66 a

4.3.3b) I0. -16% to +52% 15% --+- 42db 65 a

A.3.3c) i00. -22% to +68% 21% --++ 33db 67 o

&.3.3d) I000. -42% to +100% 37% ++-+ 22db 830

4.3.3e) I0000. -55% to +100% 49% -+-+ 15db 620

As expected this sequence indicates increasing robustness. How-

ever, it is worthwhile examining the loop gains illustrated in

Figs. 4.3.12 - 4.3.13. With qc2 = 1 the design is almost identical to

# 4.3.1c. As qc2 is increased the loop gain at .i rad/sec does not

change much. On the other hand the loop gain in the range of the

flexible frequencies increases considerably. The robust control
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design is therefore placing no further control effort on the rigid

body mode, while applying alot of effort to the flexible modes. This

is confirmed by examining the locus of closed-loop pole locations,

illustrated in Fig. 4.3.14. As qc2 is increased the poles correspond-

ing to flexible modes move further into the left half plane while the

poles corresponding to the rigid body mode actually move back towards

the origin. For the robust designs, 4.3.3d and 4.3.3e, all poles cor-

responding to flexible modes are further to the left than poles cor-

responding to the rigid body mode. This suggests that designs which

attempt a high performance control for the rigid body mode while

ignoring flexible modes may be less robust with respect to frequency

errors than those which emphasize control of the flexible modes.
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4.3.4 Increased Performance with Fixed Robustness -

The final sequence of LQR designs involves increasing the weighting

on RMS error with a fixed weighting on robustness to see if perfor-

mance can be improved without affecting robustness. In this case

qc = 1.0, qc2=l,000.0 and qcl is increased from .I to 1,000.0.

loop gains

Figs. 4.3.15

Table 4.3.4.

for qcl = .I, i0. and 1,000.0 are illustrated

- 4.3.17, while robustness results are presented

The

in

in

Table 4.3.4 Design Sequence 4.3.4 (qc=l.0, qc2=l,000.0, increase qcl)

Design # qcl Uniform Frequency Mixed Frequency GM PM

Shifts Shifts

4.3.4a) .i -99% to +92% 44% -+-+ 22db 80 o

4.3.4b) i. -42% to +83% 37% ++-+ 22db 83 o

4.3.4c) I0. -32% to +46% 31% ---+ 22db 83 o

4.3.4d) I00. -29% to +29% 26% -+-- 20db 85 o

4.3.4e) I000. -32% to +29% 27% -+-+ 17db 69 °

In this case, performance clearly increases as indicated by the

loop gain, but robustness decreases. Note that the loop gain in the

region of the flexible frequencies does not change much, while the

loop gain near .i rad/sec increases from approximately 42db to approx-

imately 78db. This indicates that the increasing robustness of design

sequence 4.3.3 cannot be attributed only to the fact that loop gain is

maintained above 0db throughout the region of flexible frequencies.

It is also worthwhile noting that design # 4.3.4a is extremely robust
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I
for uniform frequency increases and decreases, but can still go unsta-

(I ble for 44% mixed variations in frequency. This illustrates the dan-

i ger in checking robustness with respect to increases and decreases of

all frequencies together.

I
The emphasis that increasing qcl places on the rigid body mode is

I illustrated in Fig. 4.3.18. This agrees with the previous observation

that robustness is decreased when the real part of the poles corres-

I ponding to the rigid body mode lie significantly to the left of the

real part of the poles corresponding to flexible modes.

I I, COMPEN_SRTEO LOOP OE= 10.00000

NH(AS 2 OC 1.00

i H _JOES8 tO) ]
C IqOOE 5 0 0C) O. )OOO
COO O. O03q 102 q
COlq 0.0019 0C2 tO00.00)0

103 0
GO3 0. 0000

I RS) 0, O00O
/_ R_?. 0.0001

I,,

' !
I _ b _ _ i_*i_ Frequency (rad/sec)

I Figure 4.3.13 Loop Gain for Design # 4.3.4a

I

I

I

I

I

I
108



I

I

I

I ":
B

! ;

COMPENSATED LOOP C)E= lO.O0000

HHER5 2 OC i.oo
N lqOOE$O 10] i
C MOOE58 0C) 10.0000
COB O.oOBq 102 q
COM 0.0019 0C2 !000.00 tO

xo_ o
0C3 O.0000

__ RSI o. 0ooo

_ .,_ 0.000,

..................._
I Frequency (rad/sec)

Fi ure 4 3 14 Loo Gain for Desi n # 4 3 4c_gure _._. _oop __ __ __!.s_n. _ _._._

I
s. COMPENSI:::ITEO LOOP C)E= 10.00000

I _ liNERS 2 OC 1. O0

u

N MODESO I0; i

st _ c J,OOOESe Or) _ooo.oo_li _ cob o. oo_, zo_

COlq 0,0019 0C2 _000.001

i -_. xo_l_ :_;oooooO. 0000

_a. _ _ ._ o.ooo,

i
t.

I

I

I
Frequency (rad/sec)

Figure 4.3.15 Loop Gain for Desi__n # 4.3.4e

I

I

I

I
109



/

/I

I

I NE 4.3. _,

, liI

I

l

i

I

,I

-15.00 -12. O0 -9.00 -6.00 -3.00 0._0
I REAL PRR T
I

Figure 4 3.16 Closed Loo E Regulator Poles for Design Sequence # 4.3.4

I
II0

I



I
I
i
I
i
i
I

I

I

I
I
i
I
I
i
I
I

I

4.4 Estimator Design and Robustness

Now consider the effect of varying the estimator design within the

context of the modified LTR approach. To achieve loop recovery, pro-

cess noise must enter through the control input. On the other hand,

the results of Section 2.2.3 suggest an alternate noise model to

improve robustness, though this model does not necessarily result in

loop recovery. Adding this alternate noise model constitutes a modi-

fied Loop Transfer Recovery approach to designing the estimator. To

study the tradeoffs between loop recovery and robustness with this

modified approach consider the following state space representation:

= Ax + Bu + BWl+ Ww2+ w 3 (4. lOa)

y = Cx + n (4.10b)

.,,.___ ,,T m ---- 1JJ' f

...... - -_-o_L " _i 0 _2 0 _n ]

E[wI2 ] = E[w2= ] = 108*qe, E[nn T] = I

E[w3w3T ] = 108*rs2*_r = 108*rs2 *

0

(d12

O

0

0 w
n

qe is the parameter which is increased to achieve loop recovery, rsl

iii



I
I

I

i
I

i
i
I

i
I

I
i
I
I

I

I
I

ii

I

weights a particular choice of a second column of the B-matrix as sug-

gested in Section 2.2.3. The point of including rsl is to see if it

approximates the effect of rs2 without affecting loop recovery, rs2

increases the effect of the noise model suggested in Section 2.2.3.

Roughly qe can be thought of as a term which adjusts loop recovery/

performance, rs2 as a term which adjusts robustness, and rsl as an

approximation to rs2. The factor 108 is included so that loop recov-

ery is achieved for reasonable values of qe.

# FULL-STATE FEEDBACK LOOP
Q

NNFAS 2 OC I. OO

N NOOES8 IO] !
S c .ooese ec] _o.oooo
d._ cos o.ooa, z_ q

co. o.oozs oc2 ,ooo.oooo
zos o j

S _ o¢3 o.oooo !
d._ Rs_ o.ooooI

AS2 O.O00O- i

z !

_-.q._.y <_a/_._)

Figure 4.4.1 Full-State Feedback Loo_ Gain for Standard LQR Design

Again, to compare the various estimators, a standard LQR design is

chosen and kept constant thoughout this section. Rather than choose a

design which is stable for large frequency variations, a design with

intermediate robustness is chosen. This allows a better test of the

effect of estimator design on robustness. The design is # 4.3.4c

which is stable for -32% to +46% frequency variations with the stan-

112



I

I

i

I

I
I
I

I
I

I
I
I
I

i
I

I
I
l

dard estimator. The loop gain for this design, again with the

standard estimator, is illustrated in Fig. 4.3.16. As a reference,

the loop gain for LQR design # 4.3.4c with full-state feedback is

illustrated in Fig. 4.4.1. The full-state feedback design has i02 e

phase margin and infinite gain margin. Loop Transfer Recovery designs

will approximate the loop shape and therefore the phase margin of the

full-state feedback design. Modified Loop Transfer Recovery designs

may exhibit lower gains, implying reduced performance, suggesting that

an acceptable compromise can be found. The following sections

describe various sequences of estimator designs. The format is simi-

lar to that followed in Section 4.3.

4.4.1 Straight Loop Transfer Recovery -

The simplest design from an LTR point of view is one which seeks

straight asymptotic loop recovery. In this case rsl = rs2 =0.0 and qe

is increased from .01 to 100.0.

Table 4.4.1 Design Sequence 4.4.1 (rsi=0.0, rs2=0.0, increase qe)

Design # qe Uniform Frequency Mixed Frequency GM PM
Shifts Shifts

4.4.1a) .01 -20% to +14% 14% ++++ 24db 60 e

4.4.1b) .i -26% to +9% 9%++++ 18db 66 e

4.4.1c) I. -30% to +8% 8% ++4-+ 18db 79 o

4.4.1d) I0. -33% to +9% 9% ++4-+ 21db 85 a

4.4.1e) I00. -34% to +10% 10% ++4-+ 26db 91 e

The loop gains for qe = .01, 1.0 and i00.0 are illustrated in

Figs. 4.4.2 - 4.4.4. Note that as qe is increased both the low fre-
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quency loop gain and the bandwidth increase. This indicates that loop

recovery improves performance, which provides some justification for

the interpretation of qe as a performance term. Furthermore, gain and

phase margins increase as expected, though the designs are not parti-

cularily robust. The full-state feedback design #4.3.4c has 102 °

phase margin and infinite gain margin. As qe is increased beyond

100.0 the phase margin will asymptotically approach 102 a, but this

will not necessarily imply a further improvement in robustness with

respect to frequency errors. Loop recovery is achieved by qe = 100.0,

but robustness does not improve significantly. This indicates that

while straight loop recovery designs approach LQR performance levels

they do not necessarily result in good robustness with respect to fre =

quency variations.

The convergence of the closed-loop estimator poles to the plant

zeros is illustrated in Fig. 4.4.5. As qe is increased, the estimator

poles move to the right, converging on fixed points. Since the system

is lightly damped, the plant zeros will lie close to the imaginary

axis, and the closed-loop estimator poles will therefore converge on

points close to the imaginary axis. The lightly damped estimator

poles may contribute to the lack of robustness evidenced by the LTR

design. A relationship between robustness and the closeness of esti-

mator poles to the imaginary axis will be demonstrated by more robust

estimator designs, as well as algebraic designs and optimal LTR

designs, which allow direct manipulation of the pole locations.
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4.4.2 Modified Loop Transfer Recovery -

To examine the effect of rs2, increase qe and rs2 together. This

is a modified Loop Transfer Recovery approach which should still

approach loop recovery, but will also exhibit increased robustness.

In this case rsl = 0.0 and rs2 = qe.

Table 4.4.2 Design Sequence 4.4.2 (rsl=0.0, rs2=qe, increase qe)

Design # qe Uniform Frequency Mixed Frequency GM PM
Shifts Shifts

4.4.2a) .00001 -24% Co +33% 24% .... 23db 40 o

4.4.2b) .0001 -31% to +70% 29% +--- 21db 33"

4.4.2c) .001 -41% to +85% 28% +--- 23db 33 o

4.4.2d) .01 -46% to +89% 29% +4--- 27db 35 o

4.4.2e) .i -48% to +91% 30% +4--- 34db 36 o

4.4.2f) I. -49% to +91% 31% ++-- 51db 37 o

4.4.2g) i0. -50% to +91% 31% 4-I--- 61db 38 o

The loop gains for qe = .00001, .001, .i and I0. are illustrated in

FI_=. 4.4.6 - 4.4._. A_ qe _id rs2 are increased together the low

frequency loop gain does not increase substantially. This indicates

that the rs2 term limits loop gain while improving robustness. It is

worthwhile to compare this result to design sequence 4.3.3 where

robustness was achieved by keeping all the flexible modes above 0db.

Design sequence 4.4.2 achieves robustness with all the flexible modes

near cross-over. This suggests that robustness is not necessarily

achieved by maintaining modes above crossover, but is a complicated

function of things other than loop shape. It should also be noted

118



!

m

m

I

I
!
I

!

!

I
I

!
!
I

I

I

I

I

I

that the increase of robustness with respect to softening and stiffen-

ing the structure is much more pronounced than the robustness with

respect to corners of the parameter space. This indicates that the

two measures of robustness used in this dissertation do not necessar-

ily result in the same conclusions.

As illustrated in Fig. 4.4.10, increasing qe and rs2 together has

little effect on the estimator poles corresponding to the rigid body

mode, but shifts poles corresponding to flexible modes to the left.

Note that these poles do not converge on plant zeros, indicating that

loop recovery will not be achieved. These results are similar to

those observed when varying LQR designs. In that case robustness was

increased by shifting regulator poles corresponding to flexible modes

to the left with respect to regulator poles corresponding to the rigid

body mode. The results indicate that a similar relationship exists

for the estimator poles.
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4.4.3 Fixed Robustness with Increasing Loop Recovery -

Next examine the effect of fixing rs2 while increasing qe.

rsl = 0.0, rs2 = .00001 and increase qe from .01 to i0.0.

is a modified Loop Transfer Recovery approach which

increase performance without decreasing robustness.

Let

Again this

attempts to

Table 4.4.3

Design #

Design Sequence # 4.4.3 (rsl=0.0, rs2=.00001, increase qe)

qe Uniform Frequency Mixed Frequency GM PM

Shifts Shifts

4.4.3a) .01 -23% to +26% 23% .... 23db 38 o

4.4.3b) .i -25% to +22% 22% ++4+ 19db 60 o

4.4.3c) i. -30% to +24% 24% ++++ 18db 77 o

4.4.3d) i0. -33% to +30% 30% 444+ 21db 84 o

4.4.3e) i00. -34% to +36% 33% -+-- 26db 91 o

The loop gains for qe = .01, 1.0 and I00.0 are illustrated in

Figs. 4.4.11 - 4.4.13. Loop recovery is achieved and performance is

i,LuL_d wiLh a mud_s_ in_rea_e for both measures of robustness.

This suggests that loop recovery and robustness to frequency errors

can be simultaneously achieved, though a modification of the LTR

approach must be used to attain this result. The modification simply

involves adding a small rs2 term. In this case the estimator poles do

converge on plant zeros as illustrated in Fig. 4.4.14. The phase mar-

gin also approaches the full-state feedback phase margin of 102".
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4.4.4 Fixed Loop Recovery with Increasing Robustness -

Now fix the loop recovery parameter qe at a level that achieves

loop recovery and attempt to improve robustness by increasing rs2.

Let qe = i0.0, rsl = 0.0 and increase rs2 from .00001 to I0.0. This

is another version of the modified Loop Transfer Recovery approach and

should result in improved robustness.

Table 4.4.4

Design #

Design Sequence # 4.4.4 (qe=10.0, rsl=0.0, increase rs2)

rs2 Uniform Frequency Mixed Frequency GM PM

Shifts Shifts

4.4.4a) .00001 -33% to +30% 30% ++4-+ 21db 840

4.4.4b) .0001 -32% to +46% 31% ---+ 22db 830

4.4.4c) .001 -32% to +55% 30% --++ 22db 740

4.4.4d) .01 -38% to +70% 32% ++-- 27db 42 o

4.4.4e) .i -46% to +80% 32% ++-- 32db 310

4.4.4f) I. -51% to +88% 32% +--- 39db 320

4.4.4g) I0. -50% to +91% 31% 4-+-- 42db 380

The results show that robustness with respect to stiffenin_ and
v

softening the structure does increase but robustness with respect to

corners of the parameter space does not vary significantly. The loop

gain actually decreases as illustrated in Figs. 4.4.15 - 4.4.18. For

rs2 = .00001 the loop gain at .i rad/sec is approximately 62db, while

for rs2 = 10.0 the same loop gain is approximately 30db. This is a

case where adding process noise to the KBF filter decreases rather

than increases the loop gain. It is also another case where robust-

ness with respect to uniform frequency shifts increases while phase
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margin decreases, again illustrating the lack of correlation between

actual robustness and the margins.

Fig. 4.4.19 indicates that increasing rs2 shifts poles correspond-

ing to flexible modes to the left while shifting poles corresponding

to the rigid body mode to the right. This results in decreased con-

trol effort applied to the rigid body mode and decreased low frequency

loop gain. Again it illustrates the relationship between estimator

pole location and robustness.
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4.4.5 Addition of W_W T Term -

Section 2.3.3 suggests a diagonal noise covariance to improve

robustness. This covariance is represented by Matrix Qr and is cont-

rolled by the parameter rs2. One problem with increasing rs2 is that

this decreases loop gain and therefore performance (see Sec-

tion 4.4.3). Note that the noise model model represented by rs2 cor-

responds to an independent white noise input entering each mode,

weighted by the frequency of that mode. A similar noise model might

assume that the n independent inputs were actually a single noise

input. In this case the noise would enter the modes though column

vector W in Eq. 4.10. The advantage of considering the second noise

model is that W can be regarded as an appended column to the B-matrix,

as discussed in Section 3.2. Theoretically, for a plant with one more

output than input, any column can be added to the B-matrix, as long as

the resulting plant is minimum phase. Therefore increasing rsl should

approximate the affect of increasing rs2 without the corresponding

decrease in loop gain. The robustness of these designs is presented

in Table 4.4.5.

Surprisingly the introduction of W decreases rather than increases

robustness. This indicates that approximating w 3 by a scalar noise

input w 2 acting through the distribution matrix W (see Eq. 4.10) does

not result in improved performance or robustness. The loop gains for
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Table 4.4.5

Design #

4.4.5a)

4.4.5b)

4.4.5c)

4.4.5d)

4.4.5e)

4.4.5f)

4.4.5g)

Design Sequence # 4.4.5 (qe=lO.O, rs2=O.O, increase rsl)

rs2 Uniform Frequency Mixed Frequency GM PM

Shifts Shifts

001 -29% to +12% 12% ++++ 21db 86 o

0032 -25% to +11% 11%++++ 22db 88 o

Ol -15% to +10% 10% 4-+++ 24db 67 o

032 -12% to +9% 9%++++ 28db 50 o

i -11% to +9% 9%++++ 48db 48 o

32 -11% to +9% 9%++++ 55db 48 o

I. -11% to +9% 9% +4-++ 62db 48 o

rsl = .001, .01, .i and 1.0 are illustrated in Figs. 4.4.20 - 4.4.23.

Loop gain also decreases as rsl is increased, but not to the extent

that it does when rs2 is increased.

The locus of estimator poles of this sequence is illustrated in

Fig. 4.4.24. As opposed to sequence # 4.4.4, increased weighting is

placed on the rigid body mode. This contradicts the situations in

which robustness is increased and indicates that increasing rsl is not

an acceptable substitute for increasing rs2. Adding process noise w 2

neither improves robustness or performance.
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4.5 Algebraic Loop Recovery Designs

As indicated in Section 3.3, input loop recovery can be achieved for a

system with more outputs than inputs with the freedom of arbitrary

compensator pole placement. This is the algebraic loop recovery

approach, which synthesizes a loop recovery compensator directly from

the plant numerator and desired loop numerator polynomials. Not only

is loop recovery achieved in one step, with arbitrary pole placement,

but the resulting compensator is of lower order than the corresponding

LTR design. As discussed in Section 3.3, the process requires that

the plant numerator polynomials contain no repeated factors (i.e. the

polynomials do not share roots). These are not the transmission zeros

of the HIM0 plant, but the zeros of each of the elements of the plant

transfer function taken separately. In this regard the poles and

zeros of the 2xl plant transfer function matrix for an antenna model

o-,,v_=_ a_ _a_=u i** Table 4.5.1.

While the zeros are not repeated exactly, there are zeros in the

two channels which are very close. This indicates that while matrix S

in Eq. (3.30) will not be singular, it will be close to singular

(small minimum singular value). In this case the equation Sn = d will

have well behaved solutions (small change in n for small change in d)

for some d (corresponding to a particular choice of compensator pole

location), but very poorly behaved solutions for other d (correspond-
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Table 4.5.1 Plant Poles and Zeros for 8-mode model

Plant Poles

-44.620±155.9493

-24.959±120.0063

-12.923 ±87.791j

-5.260 ±60.090j

-2.154 ±36.5093

-0.572 ±18.9403

-0.073 ±6.9513

0.000 ±O.O00j

Zeros in Channel #I

-37.619±143.0793

-18.944±103.5843

-7.570 ±68.476j

-3.136 ±43.2613

-0.819 ±21.9923

-0.112 ±8.3003

-0.009 ±2.733j

Zeros in Channel #2

-36.940±141.8793

-19.392±104.7473

-7.309 ±67.4343

-3.293 ±44.3513

-0.744 ±20.9233

-0.138 ±9.234J

0.000 ±0.000

ing to another choice of compensator pole location). This suggests

that the the algebraic design procedure may be very sensitive to some

compensator pole locations. As an example, consider LQR design

# 4.3.4c and the compensator pole pattern illustrated in Fig. 4.5.1.

These poles are placed in the pattern of a Butterworth low-pass fil-

ter, with a cut-off frequency of I0 rad/sec. I The loop shape of LQR

design # 4.3.4c is recovered exactly, as illustrated in Fig. 4.5.3,

but the closed loop system is unstable for ±1% variations in fre-

quency. Therefore, while loop recovery can be achieved with arbitrary

compensator pole location, the resulting designs can be very sensitive

Lu frequency errors.

In order to achieve more robust designs consider the compensator

poles resulting from design # 4.4.4f. The first 12 poles are listed

in Table 4.5.2 and their location is illustrated in Fig. 4.5.2. These

.t.----.--------------------------"

The algebraic LTR procedure also requires that another pair of poles

be chosen. These poles are not cancelled and must be placed far

enough into the left half plane so that they do not affect loop

shape in the design region. For all the algebraic designs presented

in this dissertation these poles are placed a -1000±1000j so that

loop shape is fully recovered for all the designs.
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are the poles which are cancelled in the algebraic design. The

LQR/LTR version of this design is stable for -51% to +88% frequency

variations. The corresponding loop gain is illustrated in Fig. 4.5.4.

Compare this to Fig. 4.5.3 and note that the loop gain of the LQR/LTR

design is considerably lower than the loop gain of the algebraic LTR

design .2 This is because the algebraic LTR design always recovers the

LQR loop shape, independent of compensator pole location, while shift-

!

i
I
m

I

ing the pole location to improve robustness in the LQR/LTR approach

also affects loop shape.

The algebraic design is stable for -32% to +53% variations in fre-

quency. While this is less robust than the corresponding modified LTR

design, this would be expected from the increase in loop gain. It

also compares favorably with fully loop recovered modified LTR designs

I

i

(such as 4.4.1e, 4.4.3e and 4.4.4a).

Next the compensator poles are moved to the left and to the right

in an attempt to improve robustness. The rea.l part of all the poles

1
I

I

are shifted together, one and two units to the left, and one and two

units to the right (any further shift to the right would result in an

unstable compensator pole). As indicated in Table 4.5.3 the robust-

ness does not vary considerably, though moving poles to the left seems

to improve robustness with respect to frequency increases while moving

I poles to the right seems to improve robustness with respect to fre-

...--....----....--.--...

i = The loop shape of all the algebraic designs based on LQR design
# 4.3.4g are identical.

I

I
140



i
l
I,
I
i
l
|

i
I
I
l
i
i

I
i
I
l
l

COMPENSATOR LI.u,.U,F POLE PATTERN

IB

B

r:l

0

I I I I

-25. O0 -20. O0 -!5, O0 -I0. O0 -5. O0
REAL PAR T

Figure 4.5.2 Compensator Poles for Design #4.4.4f

141

o

o
cD

"CD

O
O

"¢D

O
O

ID

EU

--<

oED

o__q

_o
--L-_

0
0

-0

0
0

cD

O.gO



!
|
!
!
|

!
!

!
!
i
1
I
I
t
i
i

I
t

6

2
IS

* LO"

ALGEBRAICRLLT COMPENSATED LOOP

NI,tERS 2 OC l. O0 i
H I"IOOE58 IO) l ':
C MOOES8 OC) lO.O0001
CI_ O.O03q [O_ g

_. :o. o.oo190:2 _ooo.oooo
los o -

O.0000 ]
nS_ O.0o00 '

i

I

Frequency (rad/sec)

Fizur_ee 4.5.3 Loo E Gain for Algebraic LTR Designs

_l. COMPENSRTEO LOOP QE= lO.O0000

.IqERS 2 OC l.O0 ]
I % ii HODE$8 IO) t ]

l.I _ c .ooese oc] ,o.ooool
d.l _ toe o.oos, iz_ _ /

I _ A co. o.ooz9 oc;_ ,ooo.oopo
• [03 0L,I _ // ^ ,, o_, o.oooo/

................ _ ........ /-% .... JA- - -/.%- ........... D5,1.. _ 0 nnQQ,.!

Frequency (rad/sec)

Figure 4.5.4 Loo E Gain for Desiin # 4.4.4f

quency decreases.

Two other variations on the pole location are attempted, both based

on the observation in Section 4.4 that designs where the estimator

poles corresponding to the rigid body mode lie to the right of the

other estimator poles seem to be more robust than others. In the

first case the first compensator pole is moved to the right and to the
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Table 4.5.2 Compensator Pole Locations for Design #4.4.4f

i) -44.069 ±l13.11j

2) -2S.412 ±77.489j

3) -20.787 +_50.690j

4) -13.498 ±27.980j

5) -6.6500 ±12.012j

6) -2.6367 ±3.2261j

Table 4.5.3

Design #

Robustness when moving all poles to right and left

Poles Uniform Frequency Mixed Frequency
Shifts Shifts

GM PM

4.5.1a) 2 to left -31% to +59% 31% .... 18db I00 °

4.4.5b) I to left -31% to +58% 31% .... 18db I00 °

4.4.5c) nominal -32% to +53% 32% .... 18db I00 °

4.4.5d) 1 to right -34% to +50% 33% -+-+ iSdb I00 °

4.4.5e) 2 to right -39% to +50% 32% -+-+ iSdb i00 °

left. The results are listed in Table 4.5.4.

Table 4.5.4

Design #

Robustness when moving first pole to right and left

Poles Uniform Frequency Mixed Frequency
Shifts Shifts

GM PM

4.5.1a) 4 to left -31% to +58% 29% ---+ 18db I00 °

4.5.1b) 3 to left -31% to +56% 30% ---+ 18db i00 °

4.5.1c) 2 to left -30% to +52% 30% .... 18db i00 °

4.4.5d) i to left -29% to +47% 29% .... 18db I00 °

4.4.5e) nominal -32% to +53% 32% .... 18db I00 °

4.4.5f) i to right -34% to +39% 32% ++-+ 18db i00 °

4.4.5g) 2 to right -38% to +30% 30% ++++ igdb i00 °

Again shifting the poles has little effect, though shifts to the

left seem to improve robustness with respect to frequency increases

while shifts to the right seem to improve robustness with respect to
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frequency decreases. Finally all poles but the first are moved to the

left and to the right. These results are illustrated in Table 4.5.6.

Table 4.5.5 Robustness when moving all but the first pole

Design # Poles Uniform Frequency Mixed Frequency GM PM

Shifts Shifts

4.5.1a) 4 to left -32% to +50% 32% .... 18db I00 °

4.5.ib) 3 to left -32% to +51% 32% .... 18db i00 °

4.5.1c) 2 to left -32% to +51% 32% .... 18db i00 °

4.4.5d) 1 to left -32% to +52% 32% .... 18db i00 °

4.4.5e) nominal -32% to +53% 32% .... 18db I00 °

4.4.5f) i to right -32% to +53% 32% .... 18db i00 °

4.4.5g) 2 to right -32% to +52% 32% .... 18db I00 °

4.4.5h) 3 to right -33% to +46% 32% ---+ 18db i00 °

4.4.5i) 4 to right -33% to +39% 33% .... 18db i00 °

In this case the variations are minimal, with some loss of robust-

ness with respect to frequency increases when poles are moved to the

right.

In conclusion, the algebraic method produces compensators which

recover loop gain, but the robustness of these compensators is a

strong function of pole location. Since all these compensators result

in identical loop shapes, this dramatically illustrates the fact that

robustness with respect to parameter errors is not a function of loop

shape alone. In particular, arbitrary pole locations do not result in

robust compensators, while pole locations near those for robust modi-

fied LTR compensators do much better. It is possible to vary robust-

ness slightly by shifting poles from those of a robust modified LTR

compensator, but no significant improvement has been found. While the
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algebraic approach provides an interesting method for studying the

effect of compensator pole location it does not result in more robust

compensators than the modified LTR method. In order to fully exploit

the potential for algebraic LTR designs, guidelines would be need for

placing the compensator poles. Such guidelines have not been discov-

ered in the present work, but this may be a worthwhile topic for

future study.
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Chapter V

CONCLUSIONS

Standard Loop Transfer Recovery methods are an effective way to

achieve robust controller designs when the modeling errors of the

plant are well characterized by a single unstructured uncertainty

model. However, when these errors are not well described by such a

model, then robustness is not necessarily achieved by recovering the

full-state feedback loop shape. In this case a modified Loop Transfer

Recovery procedure must be employed.

The approach taken in this dissertation overcomes some of the

shortcomings of the _t,._o_A T_.o m_+_A_ T+ _+ .... +_ .... ____

design procedure in terms of structured uncertainties, and then minim-

izes the 2-norm of the resulting transfer function. Once performance

and control cost penalties are appropriately adjusted, a well posed

LQR problem is obtained which can be solved with standard numerical

methods. As indicated in Section 4.3, robustness and performance can

be easily traded off by adjusting only two parameters until a suitable

compromise is found. (In this trade-off, robustness refers to the

ability of the closed-loop system to remain stable in the presence of

modeling errors, and performance to the achievement of a desired loop

shape for disturbance rejection at low frequencies).

The estimator is designed by one of two procedures. The first is a

modified LTR approach where the actual process noise is augmented by

two types of fictitious noise, one of which improves robustness, while
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the other is added at the control input to achieve loop recovery.

Improved loop transfer recovery increases loop gain, implying better

disturbance rejection (performance) and increased gain and phase mar-

gins, though the significance of these margins is questionable.

The second method designs the compensator directly via an algebraic

cancellation procedure and achieves exact loop transfer recovery with

arbitrary pole placement. This method, however, is extremely sensi-

tive to pole location. For the examples examined in this dissertation

the best pole locations were found to lie near the poles of compensa-

tors that produced robust designs via the modified LTR approach. In

this case robustness of the algebraic design is approximately equal to

that of a modified LTR design with similar loop gain, while the order

of the compensator is lower.

In Chapter IV the entire design procedure is illustrated for a

large flexible space antenna. This includes the selection of a

reduced order model via approximate balanced singular values and also

the application of the methods described above. The modified LTR

design is found by varying four parameters, two in the LQR problem and

two in the KBF problem. (In terms of the notation in Chapter IV these

are qcl, qc2, qe and rs2).

The results of Chapter IV illustrate the inability of traditional

robustness measures such as gain and phase margins or loop shape to

deal with the complex problem studied in this dissertation. In parti-

cular, there is no apparent relationship between gain and phase mar-
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gins and robustness with respect to frequency variations. The

measures developed in this dissertation were found to provide a much

better basis for synthesizing robust controllers. They lead to a con-

trol design procedure which effectively balances robustness and per-

formance. The procedure also offers the advantage of a simple imple-

mentation involving widely available, efficient numerical tools.

Alternative robustness measures and controller design methods are pre-

sently under development by other researchers (e.g., _-synthesis), but

difficult numerical problems must be solved before these methods will

be ready for application to lightly damped flexible structures such as

the example considered here.

A number of extensions and directions for further research are sug-

gested by the results of this dissertation. Other parameter uncer-

tainties, such as uncertain damping ratios or modal displacements

could be taken into account by a simple generalization of the modified

LTR method. The relationship between compensator pole location and

robustness might be studied in greater depth by examining the alge-

braic design procedure. One approach would involve applying a numeri-

cal optimization to find optimal pole locations. Another direction

would be to use the structured uncertainty model of this dissertation,

but move towards synthesis methods that deal directly with this repre-

sentation. A possibility is a hybrid H2/B-synthesis approach. The

results for these more complex methods could then be compared to those

presented in Chapter IV to determine if possible improvements would

justify the increased complexity.

148



m

l
I
l

l
I

i

i
-I
I
I

i
|

I
!
i
II
I
!

AT-l)

BA-I)

BA-2)

BI-I)

BL-I)

BO-1)

CH-1)

CR-I)

DO-l)

DO-2)

DO-3)

DO-4)

REFERENCES

Athans, M., Kapasouris, P, Kappos, E., Spang, H.A., "Linear-

Quadratic Gaussian with Loop-Transfer Recovery Methodology for

the F-100 Engine," AIAA J. Guidance and Control, Vol. 9,

pp. 45-52, 1986

Barmish, B.R., Hollot, C.V., "Counter-Example to a Recent

Result on the Stability of Interval Matrices by S. Bialas "

Int. J. Control Vol. 39, pp. 1103-1104, 1984

Barmish, B.R., "Invariance of the Strict Hurwitz Property for

Polynomial with Perturbed Coefficients," IEEE Trans. Auto.

Contr., Vol. AC-29, pp. 935-936, 1984

Bialas, S., "A Necessary and Sufficient Condition for the Sta-

bility of Interval Matrices," Int. J. Control Vol. 37,
pp. 717-722, 1983

Blelloch, P.A., Mingori, D.L., Wei, J.D., "Perturbation Analy-

sis of In_ernal Balancing for Lighuly Damped Mechanical Sys-

tems," submitted to the Journal of Guidance and Control, 1986

H.W. Bode, Network Analysis and Feedback Amplifier Design, Van

Nostrand, New York, 1945

Chen, C.T., Linear System Theory and Design, Holt, Rinehart and

Winston, New York, 1984

Cruz, J.B., Perkins, W.R., "A New Approach to the Sensitivity

Problem in Multivariable Feedback System Design," IEEE Trans.

Auto. Contr., Vol. AC-9, pp. 216-226, 1964

Doyle, J.C., Stein, G., "Multivariable Feedback Design: Con-

cepts for a Classical/Modern Synthesis," IEEE Trans. Auto.

Contr., Vol. AC-26, No. i, pp. 4-16, 1981

Doyle, J.C., Stein, G., "Robustness with Observers," IEEE

Trans. Auto. Contr., Vol. AC-24, No. 4, pp. 607-611, 1979

Doyle, J.C., "Analysis of Feedback Systems with Structured Unc-

ertainties," IEE Proc., Vol. 129, No. 6, pp. 242-250, 1982

Doyle, J.C., Wall, J.E., Stein, G., "Performance and Robustness

Analysis for Structured Uncertainty," Proc. 21st IEEE Conf.

Dec. Contr., pp. 629-636, 1982

149



i

I

I

I

I

!

i

I
I

I
I

I
i

I
i

DO-5)

DO-6)

DO-7)

EV-1)

FA-I)

FR-I)

FR-2)

GA-1)

GR-1)

HA-l)

_E-1)

HO-1)

KA-I)

KA-2)

Doyle, J.C., "Synthesis of Robust Controllers and Filters with

Structural Plant Uncertainty," Proc. 22nd IEEE Conf. Dec.

Contr., pp. 109-114, 1983

Doyle, J.C., "Structured Uncertainty in Control System Design,"

Proc. 24th IEEE Conf. Dec. Contr., pp. 260-265, 1985

Doyle, J.C., "Notes from short course on Structured Uncertain-

ties," taught at TRW, Redondo Beach, California,

Jan.-Mar. 1986.

Evans, R.J., Xianya, X., "Robust Regulator Design," InSt.

Control Vol. 41, pp. 461-476, 1985

S.

Fan, M.K.H., Tits, A.L., "A New Formula for the Structured Sin-

gular Value," Proc. 24th IEEE Conf. Dec. Contr., pp. 595-596,

1985

Freudenberg, J.S., Looze, D.P., "Relations between properties

of Multivariable Feedback Systems at Different Loop-Breaking

Points: Part I," Proc. 24th Conf. Dec. Contr., pp. 250-256,

1985

Freudenberg, J., Looze, D., "A Generalization of Bode Gain-

Phase Relations to Multiple-Loop Systems," Proc. Am. Contr.

Conf., pp. 119-124, 1985

de Gaston, R.R.E., "Nonconservative Calculation of the Multi-

loop Stability Margin," Ph.D. Thesis, University of Southern

California, Department of Electrical Engineering, December 1985

Gregory, C.Z., "Reduction of Large Flexible Spacecraft Models

using Internal Balancing Theory," Proc. AIAA Guid. and Contr.

Conf., pp. 805-814, 1983

Harvey, C.A., Stein, G., "Quadratic Weights for Asymptotic

Regulator Properties," IEEE Trans. Auto. Contr., Vol. AC-23,

No. 3, pp. 378-387, 1978

Heinen, J.A., "Sufficient Conditions for Stability of Interval

Matrices," Int. J. Control Vol. 39, pp. 1323-1328, 1984

Hollot, C.V., "Matrix Uncertainty Structures for Robust Stabi-

lizability," Proc. Am. Contr. Conf., pp. 450-455, 1985

Kailath, T., Linear Systems, Prentice-Hall Inc., New Jersey,
1980

Kapasouris, P., Athans, M., Spang, H.A., III, "Gain-Scheduled

Control for the GE-21 Turbofan Engine Using LQG/LTR Methodol-

ogy," Proc. Am. Contr. Conf., pp. 109-118, 1985

150



!

i

I
I

I
i
I
i

I
I
i
I
I
I
i
I
II
!

KA-3) Kazerooni, H., Houpt, P.K., Sheridan, T.B., "An Approach to

Loop Transfer Recovery Using Eigenstructure Assignment," Proc.

Am. Contr. Conf., pp. 796-803, 1985

KA-4) Karl, W.C., Greschak, J.P., Verghese, G.C., "Comments on 'A

Necessary and Sufficient Condition for the Stability of Inter-

val Matrices'," Int. J. Control Vol. 39, pp. 849-851, 1984

KH-I) Khargonekar, P.P., Tannenbaum, A., "Non-Euclidean Metrics and

the Robust Stabilization of Systems with Parameter Uncer-

tainty," IEEE Trans. Auto. Contr., Vol. AC-30, pp. 1005-1013,
1985

KL-I) Klema, V.C., Laub, A.J., "The Singular Value Decomposition:

Its Computation and Some Applications," IEEE Trans. Auto.

Contr., Vol. AC-25, No. 2, pp. 164-176, 1980

KO-I) Kouvaritakis, B., Postlethwaite, I., "Principal Gain and

Phases: Insensitive Robustness Measures for Assessing Closed-

Loop Stabliity Property," IEE Proc., Vol. 129, No. i,
pp. 233-241, 1982

KW-I) Kwakernaak, H., "Optimal Low-Sensitivity Linear Feedback Sys-
tems," Automatica, Vol. 5, pp. 279-285, 1969

KW-2) Kwakernaak, H., "Minimax Frequency Domain Performance and

Robustness Optimization of Linear Feedback Systems," IEEE

Trans. Auto. Contr., Vol. AC-30, No. i0, pp.994-I004, 1985

KW-3) Kwakernaak, H., Sivan, R., Linear Optimal Control Systems,
Wiley, New York, 1972

LA-I) Laub, A.J., "Numerical Linear Algebra Aspects of Control Design

Computations," IEEE Trans. Auto. Contr., Vol. AC-30, No. 2,

pp. 97-108, 1985

LE-I) Lehtomaki, N.A., "Practical Robustness Measures for Hultivaria-

ble Control System Analysis," Ph.D. Thesis, Massachusetts

Institute of Technology, Hay, 1981

LE-2) Lehtomaki, N.A., Sandell, N.R., Jr., Athans, M., "Robustnesss

Results in Linear-Quadratic Gaussian Based Multivariable Con-

trol Designs," IEEE Trans. Auto. Contr., Vol. AC-26, No. 2,

pp. 75-92, 1981

LE-3) Lehtomaki, N.A., Castanon, D., Levy, B., Stein, G., Sandell,

N.R., Jr., Athans, M., "Robustness Tests Utilizing the Struc-

ture of Modelling Error," Proc. 20th IEEE Conf. Dec. Contr.,

pp. 1173-1190, 1981

151



1
I
I

i

I
I

I

-t
I
I

i

I
I
i

I
I

I
I

LE-4)

MA-I)

MO-I)

MO-2)

MO-3)

OP-I)

0w-l)

PL-I)

P0-1)

PO-2)

RO-1)

SA-I)

SA-2)

Lehtomaki, N.A., Castanon, D.A., Levy, B.C., Stein, G., San-

dell, N.R., Jr., Athans, M., "Robustness and Modeling Error

Ch&racterization," IEEE Trans. Auto. Contr., Vol. AC29, No. 3,

pp. 212-220, 1984

Madiwale, A.N., Williams, D.E., "Some Extensions of Loop Trans-

fer Recovery," Proc. Am. Contr. Conf., pp. 790-795, 1985

Morton, B.G., McAfoos, R.M., "A Mu-Test for Robustness Analysis

of a Real-Parameter Variation Problem," Proc. Am. Contr. Conf.,

pp. 135-138, 1985

Morton, B.G., "New Applications of Mu to Real-Parameter Varia-

tion Problems," Proc. 24th IEEE Conf. Dec. Contr., pp. 233-238,
1985

Moore, B.C., "Principal Component Analysis in Linear Systems:

Controllability, Observability, and Model Reduction," IEEE

Tra____nns.Auto. Contr., Vol. AC-26, No.l, Feb. 1981, pp. 17-32--

0pdenacker, P.C., Jonckheere, E.A., Safonov, M.G., "Reduced

Order Compensator Design for an Experimental Large Flexible

S_ruc_ure," Proc. 24_h IEEE Conf. Dec. Contr., pp. 1799-1805,
1985

Owens, D.H., "Gain-Phase Structures for Linear Hultivariable

Systems," Proc. Am. Contr. Conf., pp. 806-811, 1985

Plaut, R.H., Huseyin, K., " " "Dermvatlves of

Eigenvectors in Non-Self-Adjoint Systems,"

Vol. ii, No. 2, pp. 250-251, 1973

Eigenvalues and

AIAA Journal,

Postlethwaite, I., "Gain and Phase Margins for Linear Hultiva-

riable Feedback Systems," Proc. 18th Allerton Conf. on Comm.,

Contr. and Comp., pp. 396-403, 1980

Postlethwaite, I., Edmunds, J.M., MacFarlane, A.G.J., "Princi-

pal Gains and Principal Phases in the Analysis of Linear Multi-

variable Feedback Systems," IEEE Trans. Auto. Contr.,

Vol. AC-26, No. I, pp. 32-46, 1981

Rosenbrock, H.H., "The Stability of Mutivariable Systems," IEEE

Trans. Auto. Contr., Vol. AC-17, No. 2, pp. 105-107, 1972

Safonov, M.G., Stability and Robustness of Multivariable Feed-

back Systems, MIT Press, Cambridge Massachusetts, 1980

Safonov, M.G., "Robustness and Stability Aspects of Stochastic,

Multivariable Feedback System Design," Ph.D. Thesis, Massachu-

setts Institute of Technology, Hay 1977

152



I

I

I
I

I
I
I

I
I

I
I

I

I
I

I
I

I

I
i

SA-3)

SA-4)

SA-5)

SA-6)

SA-7)

SA-8)

SA-9)

SH-1)

SO-l)

s0-2)

s0-3)

ST-I)

su-1)

Safonov, M.G., Laub, A.J., Hartmann, G.L., "Feedback Properties

of Multivariable Systems: The Role and Use of the Return Dif-

ference Difference Matrix," IEEE Trans. Auto. Contr.,

Vol. AC-26, No. i, pp. 47-65, 1981

Safonov, M.G., Athans, M., "Gain and Phase Margin for Multiloop

LQG Regulators," IEEE Trans. Auto. Contr., Vol. AC-22, No. 2,

pp. 173-179, 1977

Safonov, M.G., "Tight Bounds on the Response of Multivariable

Systems with Component Uncertainty," Proc. 16th Allerton Conf.

on Comm., Contr.and Comp., 1978

Safonov, M.G., "Stability Margins of Diagonally Perturbed Mul-

tivariable Feedback Systems," IEE Proc., Vol. 129, No. 6,

pp. 251-256, 1982

Safonov, M.G., "Stability Margins of Diagonally Perturbed Mul-

tivariable Feedback Systems," Proc. 20th IEEE Conf. Dec.

Contr., pp. 1472-I&78, 1981

Safonov, M.G., "Exact Calculation of the Multivariable Struc-

tured-Singular-Value Stability Margin," Proc. 23rd IEEE Conf.

Dec. Contr., pp. 1224-1225, 1984

Safonov, M.G., "Optimal Diagonal Scaling for Infinity Norm

Optimization," Proc. Am. Contr. Conf., pp. 125-128, 1985

Shaked, U., Soroka, E., "On the Stability Robustness of Conti-

nuous Time LQG Optimal Control," IEEE Trans. Auto. Contr.,

Vol. AC-30, No. i0, pp. I039-I043, 1985

Soh, C.B., Berger, C.S., Dabke, K.P., "On the Stability Proper-

ties of Polynomials with Perturbed Coefficients," IEEE Trans.

Auto. Contr., Vol. AC30, pp. 1033-1036, 1985

Soh, Y.C., Evans, R.J., "Robust Multivariable Regulator Design

- General Cases," Proc. 24th IEEE Conf. Dec. and Contr.,

pp. 1323-1327, 1985

Soh, Y.C., Evans, R.J., "Robust Multivariable Regulator Design

- Special Cases," Proc. 24th IEEE Conf. Dec. and Contr.,

pp. 1328-1332, 1985

Stewart, G.W., Introduction to Matrix Computations, Academic

Press, New York, 1973

Sundararajan, N., Joshi, S.M., Armstrong, E.S., "Robust Cont-

roller Synthesis for a Large Flexible Space Antenna," Proc.

23rd Conf. Dec. Contr., pp.202-208, 1984

153



m

I
I
I

I
I
I
I

t

I
i
t
I
I
I
I
I
I
II

TE-1)

ZA-I)

ZA-2)

Yedavalli, R.K., Banda, S.S., Ridgely, D.B., "Time-Domain Sta-

bility Robustness Measures for Linear Regulators," AIAA J. Gui-

dance and Control, Vol. 8, pp. 520-524, 1985

Zames, G., "On the Input-Output Stability of Time-Varying Non-

linear Feedback Systems - Part I: Conditions Derived Using

Concepts of Loop Gain, Conicity, and Positivity," IEEE Trans.

Auto. Contr., Vol. AC-II, No. 2, pp. 228-238, 1966

Zames, G., "On the Input-Output Stability of Time-Varying Non-

linear Feedback Systems - Part II: Conditions Involving Cir-

cles in the Frequency Plane and Sector Nonlinearities," IEEE

Trans. Auto. Contr., Vol. AC-II, No. 3, pp. 465-476, 1966

154



m

I

I
Appendix A

SINGULAR VALUES
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I
1

Singular values measure the "size" of a complex matrix, and are equi-

valent to the concept of the modulus of a complex scalar. The singu-

lar values of a matrix transfer function can therefore be thought of

as the HIHO equivalents of the gain of a scalar transfer function.

Any n x m complex matrix A can be decomposed in the following fash-

ion:

A = U;-V* = o.u.v.
x11

i=1

I
I

i

I
I
i
I

where:

k = min(n,m)

i °i+l

U = [uI u 2 ... u ]n

V = [vI v2 ... Vn] ,

UU =UU=I

W =VV=I

The a.'s are the singular values of A, the vectors u. are the left
1 1

singular vectors of A and the vectors v. are the right singular vec-
1

I tors of A.
The largest singular value o I is denoted by _ and the

I

I
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smallest singular value ok by _.

of A in the following sense:

_[A] is the 12 induced operator norm

_'[A] - max llAxll2 = max llAxll2
x_0 llxl12=lilxl2

while _[A] is a measure of the closeness of A to singularity in the

following sense:

...q[A]= min _ = min ]iAxl]2
x*0 UxU2 llxil2"l

_[A] is the only computationally reliable tool for the determination

of near singularity, or rank of a matrix [KL-I,LA-I].

The following table includes a number of useful properties of sin-

gular values:

i) a[A] > 0 _ o[A]= I/o[A"i]

2) all=A] =l=loi[A]

3) _a[A] _ Iki[A]i _ [[A]

4) A=A*_ ai[A ] = l_i[A]l

W

5) A=A aO_ai[A] = ki[A]

6) _[A + B] _ _[A] + _[B]

7) _AB] _ _[A]_[B]

8) a[AB] ka[A]_[B]

9) re[A] - 1 _ a[I + A] &a[A] +I
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I0) _[E] <._[A] __o[A + E] > 0

11) B'[A] < 1__o[I + A] -> 1 - _[A]

Another slight variation on the singular value decompostion is the

polar decompostion, used extensively by Postlethwaite [PO-I,2,KO-I].

Write the singular value decompostion as:

A=Ur-V = UV (VZV) = (UT.V)UV

where UZV is the usual singular value decomposition, UV (VZV) is the

right polar decomposition and (UZU)UV is the left polar decomposi-

tion. Postlethwaite defines the principal gains as the eigenvalues of

9e

V_-V or UZU ' which are of course just the singular values of A, and

the principal phases as the arguments of the eigenvalues of the uni-

tary matrix UV This decomposition is useful in separating a trans-

fer function into a gain part and a phase part and will be used the

proof of Theorems 2.1 and 2.2 in Appendix B.
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Appendix B

PROOF OF UNSTRUCTURED UNCERTAINTY THEOREMS

Theorems 2.1 and 2.2 are standard in the literature [LE-1,2,3,4], but

the proofs presented here are somewhat different, and are included for

completeness. Theorem 2.1 will be proved in detail. The changes that

need to be made for Theorem 2.2 will not be extensive and will be

described in less detail.

Theorem 2.1:

Tha Multivariable Nyquis= Criterion requires that det[l + KG'],

evaluated on the standard Nyquist D-contour, encircle the origin coun-

terclockwise as many times as KG' has unstable open-loop poles. If it

is assumed that KG' has the same number of unstable open-loop poles as

KG, the encirclement count of the origin must not change as G is

warped continuously towards any allowable G'. For the Nyquist Contour

to remain fixed as G is warped towards G', it is also necessary to

assume that any poles on the jw-axis be identical for G and G'. Any

plant that has an uncertain frequency on the jw-axis will have an

infinite unstructured error in the neighborhood of that frequency, so

it is reasonable to assume that the only poles on the jw-axis are at

the origin, or equivalently, that the model have some positive damp-

ing. Furthermore, practical plants will be strictly proper, implying

that lim K(s)G(s)=0. The Nyquist D-contour can therefore be replaced
S_w
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by the jw-axis, with the possibility of an indentation about the

origin, which will not have any effect on the results for uncertain

modal data.

Since KG(I+¢Am) is a continuous function of ¢, requiring that the

encirclement count of det[I + KG] not change as G is warped towards G'

is equivalent to requiring that:

det[I + KG(I+¢Am) ] # 0 for 0 S E S I

or in terms of the minimum singular value:

_[I + K(s)G(s)(I+¢Am(S)) ] > 0, for 0Se_l, _[A(s)] < £m(S), srR R (B.I)

Dropping the dependence on s, and noting that if _[A(s)]S£m,

_[zA(s)]_£m, allows us to replace (B.I) by:

then

a[I + KG +KGAm] > 0 for _[A] $ £m (B.2)

Assume that _[(I + KG)-I]=I/(_[I + KG]) > 0. This is true whenever

_[KG] < -, which in turn is true by the definition of the Nyquist

D-contour. Multiply (B.2) by_[(I + KG)'I]:

0 <__[(I+KG)'I]_[I + KG +KGAm] _[I + (I + KG)'IKGA ]m (B.3)

Now let (I + KG)'IKG have the singular value decompostion given by

UZV or equivalently the polar decompostion given by UV (VZV). Let
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A = -_£ VU for 0_i. _[A] = _[A] = _ _ _ , so this is an
m m m

uncertainty that falls within the specified bounds.

in:

Substitute this

-IKGAm ] *0 <._[I + (I + KG) =_[I - s£ VZV ]
m

(B .z,.)

but (I-e£ VZV ) is hermitian, positive semi-definite, so the singular
m

values can be treated as eigenvalues to get:

* -1KG ]
0 < 1 - e£mOi(VZV ) = 1 - e£m i° [(I + KG)

(B.5)

1 - ,_m_(I + KG)'IKG] > 0 (B.6)

_[(I + KG)'IKG] > II(¢Z m) -> i/(_ m) (B.7)

Before continuing to prove sufficiency it is worth noting that the

particular uncertainty that will destabilize the system must have a

phase characteristic given by -VU An uncertainty with some other

phase characteristic might require that _[&m(jW)]>>£m(W) before the

system would go unstable. This indicates that if there is a some spe-

cified relationship between gain uncertainty and phase uncertainty,

the unstructured uncertainty representation of Theorem 2.1 can be

arbitrarily conservative. This point is discussed by Lehtomaki

[LE-I,3,4] in the context of most sensitive directions of the pertur-

bation.
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Now prove sufficiency by working backwards:

W[(I + KG)'IKG] < I/(& m) (B.8)

1 > &mO[(I + KG)'IKG] k_[A]_[(I + KG)'IKG] (B.9)

" KG) "IKGA_[I + ,T , _ __ + KG) IKGAml > I _[(I + m] > 0 (B.i0)

Now assume that £[I + KG] > 0, which is true whenever the nominal

feedback system is stable. Multiply by_[I + KG]:

"IKGAm]_[0 <_[I + (I + KG) I + KG] ___a[I + KG + KGA ]
m

(B.11)

_[I + KG + KGAm] > 0 (B.12)

and Theorem 2.1 is proved I.

Theorem 2•2:

The major difference in the proof of theorem 2.2 is in ascertaining

the continuity of L(z,s) as t varies from 0 to i. In particular

-i
KG(I+ZAd) must be a continuous function of ¢ for 0_z_l, or equiva-

The only difference between our result and the result stated in

• . ThisRef [DO-l] is that we've replaced o[A(jw)]<&m by o[A(jw)]S£ m

is a minor variation, and it was corrected in later papers by Doyle

[DO-3,4,5]. Furthermore, for practical purposes, the results are
identical•
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lently that L(s)=(l+Ad)'l have no zero or strictly negative real

eigenvalues. This is true since if L(s) has no zero or negative

eigenvalues, then neither does (I+Ad) , and thus Ad can have no eigen-

values in the interval (--,-I], so zAd never has eigenvalues of -i and

(I+ZAd) is never singular. If the first requirement is met it is then

necessary that:

0 <_o[I + KG(I+Ad)-I ] ¥sz_ R, 0 S ¢ _ 1 (B.13)

which in turn is equivalent to:

0<_[I + KG + Ad] 9szfl R (B.14)

The proof then continues as with Theorem 2.1.
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Appendix C

NUMERICAL CONSIDERATIONS IN ALGEBRAIC LTR

There are essentially five steps in solving for an LTR compensator by

the algebraic method. This appendix will describe the numerical con-

siderations important in each step.

I) Calculation of the Plant Numerator Polynomials -

The plant transfer function is as follows:

G(s) = C(sI-A)'IB (C.l)

where C is an mxn matrix, A is an nxn matrix, B is an nxl vector and

G(s) is an mxl vector function of s. To use the algebraic approach

the numerator polynomials of G(s) must be found. I have used two

methods, the Fadeeva method, which finds the coefficients directly

based upon the Cayley Hamilton Theorem [CH-I], and a method based on

the transfer function zeros. The Fadeeva method works well for small

systems but not for large. The first reason for this is that the num-

ber of steps is proportional to n 4, which can become computationally

very expensive. The second reason is that the algorithm involves

raising the matrix A to the (n-l)th power. This works well for dis-

crete time systems, since the eigenvalues of A lie inside the unit

circle, but it is very poorly conditioned for continuous time prob-

lems, since the eigenvalues of A may be very large.
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The second approach is far more reliable. It is based on calculat-

ing the zeros in each channel of the plant, calculating a constant

that will premultiply the numerator polynomial and then multiplying

out the zeros. The zeros of a plant are defined as values of s which

result in a zero output for a non-zero input. In terms of the state

space representation of the plant for the ith channel, this can be

defined as follows:

IsI-A), :]III;l (c.2)

where C. is the ith row of C and the plant zeros are the values of s
1

which are a solution to (C.2) for y = 0. This can in turn be trans-

formed into the following generalized eigenvalue problem:

The generalized eigenvalue problem can be solved accurately and effi-

ciently by the QZ-algorithm [ST-I], where the computational cost is

proportional to n 3. The only tricky step is the separation of finite

zeros from infinite zeros. The QZ-algorithm will result in one com-

plex vector = and one real vector 6. The eigenvalues are found by

dividing the elements of = by the corresponding non-zero elements of

_. The first step in separating finite zeros is to eliminate all ele-

ments where _ is zero. There are two possibilities for eliminating

further infinite zeros. The first is to place a threshold on the ele-

ments of 6, eliminating elements lying below this threshold. This
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method ,however, proves to be very sensitive to the threshold. A more

reliable method involves dividing all the remaining elements of a by

the corresponding non-zero elements of _ and then placing an upper

bound on the magnitude of the resulting zeros. The upper bound is

easily estimated, with some knowledge of the problem, and this method

has proved to work very well. As a final check, the number of zeros

for a SISO flexible system will almost always be n-2.

The ith numerator polynomial will have the following form:

ni(s) = ki(S'Zl)(S" z2)...(S-Zn_ 2) (C.4)

The next step therefore involves computing k. This is most easily done
1

by noting the following equality:

C (sI-A)'IB ki(S'Zl) (s-z2) """(S-Zn'2)

i - (s_Pl) (s_P2) ... (S.Pn.2) (S_Pn_l) (S.Pn) (C.5)

where pj is the jth pole. (C.5) is valid for any s which is not a

pole of the system, k. can therefore be found by evaluating (C.5) for
1

some s = s (e.g., s = i) and then solving for k.. Also note that
O O 1

only (Sol-A)'iB need be evaluated, using a linear equation solver,

(Sol-A)'l. The above method was used in Ref. ED-I to eval-rather than

uate plant transfer functions for s = jw.

The final step in solving for the plant numerator polynomials is to

multiply out (C.4), but this is a simple and effecient calculation.

The approach based on plant zeros is more complex than the Faddeva
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method and must be carried out for each channel separately, but it is

far more computationally reliable.

2) Solution to the LQR Problem -

The major step in the calculation of full-state feedback control

gains is the solution of a Riccati equation for the LQR problem. This

is solved by Potter's method [KA-1] which involves finding the eigen-

values and eigenvectors of the following Hamiltonian matrix:

L °tx = (c.6)
BR" IBT -A

Finding an accurate solution to the Riccati equation therefore reduces

to finding accurate eigenvalues and eigenvectors for (C.6). Inaccura-

cies can develop when Q is made very large in comparison with BB T.

This becomes especially important in the solution of the near singular

Kalman filter problem for the asymptotic LTR method, since Q may be

very large before loop recovery is achieved. This difficulty can be

overcome by multiplying both Q and BBT by the square root of qc' and

then multiplying the final Riccati solution matrix P by the same num-

ber, rather than simply multiplying Q by qc" This procedure keeps H

from becoming too "unbalanced" and results in accurate solutions to

the Riccati equation, even for very large qc" A similar apprach

involves calling EISPACK routine BALANCE to balance H in the sense of

Osbourne. This also improves the accuracy of the solution.
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The numerator polynomial for the optimal LQR transfer function

K(sI-A)'IB is found by the same methods used to find the plant numera-

tor polynomials.

3) Compensator Order Determination -

The compensator order is found very simply by counting the maximum

degree of the plant numerator polynomials and applying equation

(3.2&). If a proper compensator is required the compensator order

will be identical to n N in (3.24), while if a strictly proper compen-

sator is required, the compensator order will be n N + i. The only

problem in determining the compensator order is dealing with cases in

which the matrix S in (3.30) is singular. This will occur when some

plant numerators contain identical zeros. This could be checked, but

it essentially corresponds to a poorly posed problem.

4) Solution of Compensator Numerator Polynomials -

Once the plant numerator polynomials, the optimal loop gain polyno-

mial, and the compensator order are found; a set of compensator poles

are chosen and the compensator numerator polynomials are found by

solving the m(nN+l ) set of linear equations defined by (3.30). The

solution of these equations depends on the condition number of the

matrix S, which is discussed in Section 3.3. Assuming that a solution

does exist, I use a standard IHSL iterative inversion routine. This

is performed only once per design, and since the accuracy of the

pole/zero cancellations depends heavily on an accurate solution, the
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extra computational cost and storage required for the iterative solu-

tion is considered worthwhile.

5) State-Space Realization of the LTR Compensator -

Since the compensator is found in polynomial form it must be trans-

formed to a state space form. I use a observable-canonical represen-

ration [CH-I] which is as follows:

A ..

0 ...... 0 -DO
1 ...... 0

0 i .... 0

• . •.•° °

00 .... I-D

n N

nl, 0 •.. nm, 0
° • ,

• °

nl ,n N" nm,n
(C.7)

c:[co ...... o]

where D. is the ith coefficient of the compensator denominator polyno-1

mial, ni, j is the jth coefficient of the ith compensator numerator

polynomial, and c is the product of the compensator poles which are

not cancelled.

Since the polynomial coefficients are sometimes very large, and

will possibly contribute to later numerical problems, the state-space

representation is balanced so as to minimize the 1-norm of the matrix•

This is a relatively cheap operation (computational cost proportional

to n2), and does result in better numerical properties for the robust-

ness calculations•
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Appendix D

ANTENNA MODEL DATA

The antenna model is described in Chapter IV. The purpose of this

appendix is to list the model data so that the results of this disser-

tation may be duplicated or compared. Table D.I lists the physical

parameters of the system, while all further data are based on a struc-

tural model of the antenna quadrant. This corresponds to the follow-

ing second order differential equation:

OO

x + D_ + _2x = Bu, y = Cx (D. i)

All data is based on a 63-mode structural model. Of the original

63-modes, however, approximately 31 are uncontrollable/unobservable

from the sensor/actuator positions chosen for this dissertation, as

indicated by approximate balanced singular values (see Section 4.2).

From an input�output point of view this indicates that a 32-mode model

is essentially identical to the 63-mode model, so all data is for the

first 32-modes. Table D.2 lists frequency and damping ratio ordered

on the basis of of approximate balanced singular values. Table D.3

lists the input matrix B, while D.4 lists the output matrix C.

Table D.5 lists the damping matrix D and finally Table D.6 lists the

matrix QRMS such that xTQRMs x is the square of the RMS surface error.

All information for the examples described in Chapter IV is contained

in this data.
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Table D. 1 Antenna Model Data

Item

Hub Mass Moment of Inertia

Hub Radius

Beam Length

Beam Mass Density

Beam Stiffness

Mesh Mass Density

Mesh Tension (radial)

(tangential)

Damping Coefficient (beam)

(mesh)

Value

85.58

46.00

1036.7

8.00xlO "5

4.05xi06

9.59

1.OOxlO °3

1.80

.00345

.00192
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Unit

Ib.in.sec 2

in

in

Ib.sec=/in 2

Ib/in

Ib.sec2/in '

Ib

ib

sec

sec
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Table D. 2 Frequency,

Mode

1

2

3

4

5

6

7

8

9

i0

ii

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Damping an__ddApproximate

Frequency

(rad/sec)

0.00000

6.95179

36.57027

18.94830

60.31645

88.73099

122.58242

162.23076

59.62264

51.89005

208.83459

262.78830

55.32309

62.18559

323.82510

392.30962

469.48279

64.85598

120.64193

79.12612

74.92353

57.70021

115.53350

132.45230

102.98778

71.18703

139 28540

67 84885

126 27082

ii0 92685

146 86891

107 05644

Damping Ratio

(% Critical)

0 0%

1 1%

5 9%

3 0%

8 7%

14 6%

20 4%

27 0%

6 4%

5 2%

35.7%

45.1%

5.4%

6.1%

55.7%

67.6%

80.9%
6.3%

11.7%

7.6%

7.2%

5.6%

II. 1%

12.7%

9.9%

6.9%

13.4%

6.5%

12.1%

I0.7%

14.1%

I0.3%
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Balanced Singular Values

Approximate Balanced

Singular Value

INFINITE

0.2283233791E+00

0.9497325943E-01

0.8458939640E-01

0.5315266075E-01

0.5528646096E-01

0.3278469507E-01

0.2105883068E-01

0.1266272318E-01

0.1050968921E-01

0.1007722723E-01

0.6011596893E-02

0.2993721983E-02

0.5265596729E-02

0.2963382299E-02

0.1996830257E-02

0.1355287359E-02

0.9801454944E-03

0.7189551663E-03

0.6302797578E-03

0.4360248329E-03

0.1726167648E-03

0.1514403122E-03

0.I073543331E-03

0.I056754992E-03

0.8743073515E-04

0.7292762316E-04

0.5989437099E-04

0.3596155921E-04

0.2675764704E-04

0.9382695966E-05

0.1708525827E-05
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Table D.3 Input Matrix B

COLUMN 1

0.93232941E-01

"0 12264582E+00

-0 51061561E+00

"0 28537016E+00

-0 97870307E+00

-0 65160771E+00

-0 II015151E+01

-0 I1259166E+01

-0 27375730E+00

-0 19977346E+00

"0 I0570916E+01

"0 97602427E+00

"0.Ii122365E+00

"0.17318549E+00

"0.89571392E+00

"0.83593602E+00

-0.87737986E+00

0.77353996E-01

0.12183550E+00

-0.73710178E-01

"0.57412321E-01

-0.25647807E-01

0.53449162E-01

0.50889322E-01

-0.37706533E-01

-0.23696058E-01

0.44393740E-01

0.20734734E-01

0.27591842E-01

0.21996120E-01

0.17429700E-01

-0.42419404E-02
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COLUMN I

0.93232941E-01

0.00000000E+00

COLUMN 5

-0.97870307E+00

0.10835038E+01

COLUMN 9

-0.27375730E+00

0.22422917E+00

COLUMN 13

-0.11122365E+00

0.11487366E+00

COLUMN 17

-0.87737986E+00

0.77878650E+00

COLUMN 21

-0.57412321E-01

0.58941248E-01

COLUMN 25

-0.37706533E-01

0.42910304E-01

COLUMN 29

0.27591842E-01

-0.28839699E-01

Table D.4 Output Matrix C

COLUMN 2

-0.12264582E+00

0.24335795E+00

COLUMN 6

"0.65160771E+00

0.55838278E+00

COLUMN I0

-0.19977346E+00

0.20085667E+00

COLUMN 14

-0.17318549E+00

0.15370534E+00

COLUMN 18

0.77353996E-01

-0.67831847E-01

COLUMN 22

-0.25647807E-01

0.34724757E-01

COLUMN 26

-0.23696058E-01

0.27135897E-01

COLUMN 30

0.21996120E-01

-0.18512671E-01

COLUMN 3

-0.51061561E+00

0.61749390E+00

COLUMN 7

-0.11015151E+01

0.99704163E+00

COLUMN ll

-0.10570916E+01

0.95020516E+00

COLUMN 15

-0.89571392E+00

0.78891834E+00

COLUMN 19

0.12183550E+00

-0.11314490E+00

COLUMN 23

0.53449162E-01

-0.49331841E-01

COLUMN 27

0.44393740E-01

-0.42185051E-01

COLUMN 31

0.17429700E-01

-0.13913096E-01
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COLUMN 4

-0.28537016E+00

0.18318503E+00

COLUMN 8

-0.11259166E+01

0.12321333E+01

COLUMN 12

-0.97602427E+00

0.I0860521E+01

COLUMN 16

-0.83593602E+00

0.95115708E+00

COLUMN 20

-0.73710178E-01

0.72486687E-01

COLUMN 24

0.50889322E-01

-0.49704958E-01

COLUMN 28

0.20734734E-01

-0.15009767E-01

COLUMN 32

-0.42419404E-02

0.77825443E-02
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COLUMN i

0.00000000E+00

0.00000000E+00

0.00000000E+00

0.00000000E+00

0.00000000E+00

0.00000000E+00

0.00000000E+00

0.00000000E+00

0.00000000E+00

O.00000000E+00

0.00000000E+00

0.00000000E+00

0.00000000E+00

0.00000000E+00

O.O0000000E+O0

0.00000000E+00

0.00000000E+O0

0.00000000E+00

0.00000000E+O0

0.00000000E+00

0.00000000E+00

0.00000000E+00

0.00000000E+00

0.00000000E+00

0.00000000E+00

0.00000000E+00

0.00000000E+00

0.00000000E+00

0.00000000E+00

0.00000000E+00

0.00000000E+00

0.00000000E+00

Table D.5 Damping

COLUMN 2

0 O0000000E+O0

0 14638437E+00

-0 50403864E-01

-0 30499319E-01

-0 96051567E-01

-0 64761062E-01

-0 10757214E+00

-0 11019300E÷00

-0 28117977E-01

-0 16068441E-01

-0 I0341279E+00

-0 95527870E-01

-0 88294531E-02

-0 16863195E-01

-O.87586191E-01

-0. 81945184E-01

-0. 8580860 IE-01

0.77615037E-02

0.12065249E-01

-0.57102945E-02

-0.44285185E-02

-0.12790714E-02

0.55117068E-02

0.49177136E-02

-0.29948857E-02

-0.14402934E-02

0.41919961E-02

0.25716347E-02

0.27459402E-02

0.25603561E-02

0.14789512E-02

0.10151803E-03
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Matrix D

COLUMN 3

O.O0000000E+O0

-0.50403864E-01

0.43079375E+01

-0.15115725E+00

-0.50519897E+00

-0.40646664E+00

-0.59225094E+00

-0.60448869E+00

-0.72046680E-01

-0.92852435E-02

-0.56754228E+00

-0.52376478E+00

-0.94783629E-01

-0.21291377E+00

-0.48263768E+00

-0.44992022E+00

-0.47167806E+00

0.16422412E+00

0.52677988E-01

-0.I1721112E-01

0.28275500E-01

-0.85951736E-01

0.21295666E-01

0.12023530E-01

-0.59774351E-03

0.75244409E-01

0.II070899E-01

0.12172107E+00

-0.60432359E-03

0.12025279E-01

0.93794112E-03

0.60223775E-02

COLUMN 4

O.O0000000E+O0

-0.30499319E-01

-0.15115725E+00

0.I1440055E+01

-0.28374255E+00

-0.17942450E+00

-0.32090525E+00

-0.32712396E+00

-0.72937681E-01

-0.95720628E-01

-0.30713B46E+O0

-0.28426118E+00

-0.49483060E-01

-0.44504431E-01

-0.26058077E+00

-0.24288004E+00

-0.25555047E+00

0.13418431E-01

0 36269594E-01

-0 33739170E-01

-0 29849041E-01

-0 14795521E-01

0 14956000E-01

0 17493581E-01

-0 16677566E-01

-0 19920489E-01

0 16046914E-01

-0 56398774E-02

0 99205552E-02

0 42554055E-02

0 83025561E-02

-0 48136680E-02
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COLUMN 5

O.O0000000E+O0

-0.96051567E-01

-0.50519897E+00

-0.28374255E+00

0.25846961E+02

-0.67036902E+00

-0.12441595E+01

-0.12637859E+01

-0.82294032E+00

-0.22115186E+00

-0.12271264E+01

-0.I0769157E+01

0.22061337E+00

0.30866078E+00

-0.10089703E+01

-0.95656393E+00

-0.97957931E+00

-0.34115156E+00

-0.58050773E-01

0.36647841E+00

0.26644261E+00

0.41561674E+00

-0.15645428E+00

0.32889958E-01

0.23777302E+00

0.34280941E-01

0.I0500231E+00

-0.19630530E+00

-0.87896274E-01

-0.12577410E+00

0.I1545757E+00

-0.II093549E-01

D (cont.)

COLUMN 6

O.O0000000E+O0

-0.64761062E-01

-0.40646664E+00

-0.17942450E+00

-0.67036902E+00

0.I0519942E+02

-0.85700581E+00

-0.73630140E+00

0.16741648E+01

0.83854036E+00

-0.84540448E+00

-0.67819016E+00

0.41918747E+00

0.75983362E+00

-0.62711973E+00

-0.68915568E+00

-0.55299806E+00

-0.23575097E+00

0.12791185E+00

0.36227628E+00

0.31197621E+00

-0.28632101E-01

0.64868177E-01

0.57725248E-01

-0.95528736E-01

0.20981601E+00

0.35996553E-01

0.36223743E-01

0.51784136E-01

0.18310980E-01

-0.39317319E-03

-0.28989149E-01

COLUMN 7

O.O0000000E+O0

-0.I0757214E+00

-0.59225094E+00

-0.32090525E+00

-0.12441595E+01

-0.85700581E+00

0.49918619E+02

-0.14171384E+01

-0.35669112E+00

0.13619481E+00

-0.13565030E+01

-0.12710761E+01

-0.79699219E-01

-0.I1863941E+00

-0.11313962E+01

-0.I0783901E+01

-0.II166330E+01

-0.18902100E+00

-0.21865088E+01

-0.43861694E+00

-0.62001030E+00

-0.45102015E-01

-0.87211122E+00

-0.79801809E+00

0.43881264E+00

-0.61539617E+00

-0.70732005E+00

-0.45103535E+00

-0.37508757E+00

-0.29766037E+00

-0.45606966E+00

0.96217342E-01
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COLUMN 8

O.O0000000E+O0

-0.II019300E+00

-0.60448869E+00

-0.32712396E+00

-0.12637859E+01

-0.73630140E+00

-0.14171384E+01

0.89238053E+02

-0.58832570E+00

-0.17708274E+00

-0.13257525E+01

-0.12965739E+01

0.21219101E+00

-0.83902243E-01

-0.I1807640E+01

-0.I0598043E+01

-0.I1530837E+01

0.I0569110E+00

0.32660691E+00

-0.63969795E+00

-0.33854901E+00

0.28867957E+00

0.38778673E+00

-0.36409171E+00

-0.18151580E+00

-0.57432491E-01

-0.40794111E+00

0.94898692E-01

-0.99071555E-01

0.29100065E+00

0.I1889891E+00

0.89167638E-01
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COLUMN 9

0.00000000E+00

-0.28117977E-01

-0.72046680E-01

-0.72937681E-01

-0.82294032E+00

0.16741648E+01

-0.35669112E+00

-0.58832570E+00

0.76503011E+01

0.40344857E+00

-0._8154585E+00

-0.35515553E+00

0.18020995E+00

0.33104659E+00

-0.51293751E+00

-0.21915347E+00

-0.51286710E+00

-0.86524213E-01

0.61570842E-01

0.15766222E+00

0.13846525E+00

-0.39504416E-01

0.35573213E-01

0.28113839E-01

-0.54853196E-01

0.10141112E+00

0.15223052E-01

0.31926880E-01

0.28164514E-01

0.13172814E-01

-0.63385091E-02

-0.13191413E-01

D (cont.)

COLUMN 10 COLUMN Ii COLUMN 12

0.00000000E+O0 0.00000000E+00 0.00000000E+00

-0.I0341279E+00

-0.56754228E+00

-0.30713846E+00

-0.12271264E+01

-0.84540448E+00

-0.13565030E+01

-0.13257525E+01

-O.ASI54585E+O0

0.42986876E-01

0.14910184E+03

-0.I1610500E+01

-0.15890190E+00

0.61450148E-01

-0.II038452E+01

-0.10271764E+01

-0.10574638E+01

-0.29427909E+00

0.23832486E+00

0.87100258E-03

0.12490886E-01

-0.12462226E-01

-0.37135533E-01

0.38392645E+00

0 12300764E+00

-0 14449470E+00

0 14485717E+00

-0 29959442E+00

0 32745084E+00

-0 10696807E+00

-0 24077618E+00

-0.33957402E-01

-0.95527870E-01

-0.52376478E+00

-0.28426118E+00

-0.I0769157E+01

-0.67819016E+00

-0.12710761E+01

-0.12965739E+01

-0.35515553E+00

-0.13542488E+00

-0.I1610500E+01

0.23707070E+03

0.22615722E+00

-0.25081353E+00

-0.98959215E+00

-0.95785436E+00

-0.I0051085E+01

0.11734967E+00

0.44778812E-01

-0.25008331E+00

-0.46131715E+00

0.17083517E+00

0.16030759E+00

0.19176870E-01

-0.12470831E+00

-0.40677658E+00

0.27913999E+00

-0.14613640E+00

-0.15140199E+00

0.21277751E+00

0.36562724E+00

0.I0633908E+00

-0.16068441E-01

-0.92852435E-02

-0.95720628E-01

-0.22115186E+00

0.83854036E+00

0.13619481E+00

-0.17708274E+00

0._0344857E+00

0.53849061E+01

0.42986876E-01

-0.13542488E+00

0.99284754E-01

0.17570832E+00

0.I0956457E-01

-0.I0439742E+00

-0.18592858E-01

-0.53828825E-01

-0.40827822E-02

0.81028934E-01

0.68142928E-01

-0.I1416819E-01

0.17864543E-02

0.I0437037E-02

-0.14719426E-01

0.45318810E-01

-0.38758805E-02

0.71467195E-02

0.71098133E-02

-0.10428367E-03

-0.94073005E-02

-0.47703679E-02
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D (cont.)

COLUMN 13 COLUMN 14 COLUMN 15 COLUMN 16

0.00000000E+00

-0.88294531E-02

-0.94783629E-01

-0.49483060E-01

0.22061337E+00

0.41918747E+00

-0.79699219E-01

0.21219101E+00

0.18020995E+00

0.99284754E-01

-0.15890190E+00

0.22615722E+00

0.59404951E+01

0.I0526167E+00

-0.17351093E+00

0.21272362E+00

-0.13596495E+00

-0.41096281E-01

0.87134134E-02

0.49387878E-01

0.40896632E-01

0.12982190E-01

0.41223744E-02

0.23484288E-02

-0.54044759E-02

0.22753506E-01

0.25088608E-02

-0.40491722E-02

0.10790900E-02

0.I0092969E-02

0.37383120E-02

-0.22085961E-02

0.00000000E+00

-0.16863195E-01

=0.21291377E+00

-0.44504431E-01

0.30866078E+00

0.75983362E+00

-0.I1863941E+00

-0.83902243E-01

0.3310_659E+00

0.17570832E+00

0.61450148E-01

-0.25081353E+00

0.I0526167E+00

0.76159037E+01

0.13730200E+00

-0.20682669E+00

-0.44863237E-02

-0.76972262E-01

0.15072994E-01

0.90492050E-01

0.73799009E-01

0.16254822E-01

0.35229546E-02

0.10099643E-01

-0.87549399E-02

0.39915611E-01

0.72564018E-02

-0.97596100E-02

0.75798611E-02

-0.32293414E-02

0.16135216E-02

-0.68611338E-02

0.00000000E+00

-0.87586191E-01

-0.48263768E+00

-0.26058077E+00

-0.I0089703E+01

-0.62711973E+00

-0.I1313962E+01

-0.I1807640E+01

-0.51295751E+00

0.I0956457E-01

-0.II038452E+01

-0.98959215E+00

-0.17351093E+00

0.13730200E+00

0.36078019E+03

-0.83559901E+00

-0.92706941E+00

-0.10719129E+00

0.32540102E+00

-0.51197222E+00

-0.19334825E+00

0.72721887E-01

0.79846718E-01

-0.56778261E-03

0.80833998E-01

0.76403008E-01

-0.17002760E+00

0.66721161E-01

0.20586809E+00

-0.86320441E-01

-0.42874246E-01

-0.72876769E-01

O.O0000000E+O0

-0.81945184E-01

-0.44992022E+00

-0.24288004E+00

-0.95656393E+00

-0.68915568E+00

-0.I0783901E+01

-0.I0598043E+01

-0.21915347E+00

-0.I0439742E+00

-0.I0271764E+01

-0.95785436E+00

0.21272362E+00

-0.20682669E+00

-0.83559901E+00

0.53010861E+03

-0.82568860E+00

-0.13957629E+00

-0.39939289E-01

0.55703788E-02

0.48746786E-01

0.30819071E-01

0.95363647E-02

0.27744150E+00

-0.I0049172E+00

-0.20222029E+00

0.20884561E+00

-0.33867808E+00

0.28864774E-01

0.16211056E+00

-0.I1747420E+00

0.13157002E+00

177



!
!

II
!

!I
!
i
!

-11
!
!

!
!
II
!
ii
!

I
!

COLUMN 17

O.O0000000E+O0

=0.85808601E-01

-0.47167806E+00

-0.25555047E+00

-0.97957931E+00

-0.55299806E+00

-0.11166330E+01

-0 11530837E+01

-0 51286710E+00

-0 18592858E-01

-0 I0574638E+01

-0 10051085E+01

-0 13596495E+00

-0 44863237E-02

-0.927069_iE+00

-0.82568860E+00

0.75947492E+03

0.12176257E+00

0.28170445E+00

-0.16856010E+00

-0.42274938E+00

0.17262835E+00

0.17695749E+00

-0.96432706E-01

0.51517417E-01

-0.27942107E+00

0.10240079E+00

0.39084788E-01

-0.14542906E-01

-0.30294206E-01

0.26915315E+00

-0.86057467E-01

D (cont.)

COLUMN 18

O.O0000000E+O0

0.77615037E-02

0.16422412E+00

0.13418431E-01

-0 34115156E+00

-0 23575097E+00

-0 18902100E+00

0 10569110E+00

-0 86524213E-01

-0 53828825E-01

-0 29427909E+00

0 11734967E+00

-0 41096281E-01

-0 76972262E-01

-0 10719129E+00

-0.13957629E+00

0.12176257E+00

0.81195796E+01

0.22378238E-01

-0.33618648E-01

-0.22187292E-01

-0.17140204E-01

0.13701167E-01

0.28672262E-02

-0.80333715E-02

-0.28513859E-02

0.23886979E-02

0.19677161E-01

0.18675985E-02

0.84882084E-02

0.35098953E-02

0.18750037E-02
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COLUMN 19

O.O0000000E+O0

0.12065249E-01

0.52677988E-01

0.36269594E-01

-0.58050773E-01

0.12791185E+00

-0.21865088E+01

0.32660691E+00

0.61570842E-01

-0.40827822E-02

0.23832486E+00

0.44778812E-01

0.87134134E-02

0.15072994E-01

0.32540102E+00

-0.39939289E-01

0.28170445E+00

0.22378238E-01

0.28176400E+02

0.39501550E-01

0.61127080E-01

-0.72709889E-03

0.95513142E-01

0.81767175E-01

-0.50771260E-01

0.64867992E-01

.0.70136334E-01

0.50279996E-01

0.41372769E-01

0.33846094E-01

0.45614584E-01

-0.I0110822E-01

COLUMN 20

O.O0000000E+O0

-0.57102945B-02

-0.11721112E-01

-0.33739170E-01

0.36647841B+00

0.36227628B+00

-0 43861694E+00

-0 63969795E+00

0 15766222E+00

0 81028934E-01

0 87100258E-03

-0 25008331E+00

0 49387878B-01

0.90492050E-01

-0.51197222E+00

0.55703788E-02

-0.16856010E+00

-0.33618648E-01

0.39501550B-01

0.12090169E+02

0.58981436E-01

0.76215948E-02

0.83543967E-02

0.24991558E-01

-0.47790429E-02

0.35163388E-01

0.24255339E-01

0.36738538E-02

0.91801472E-02

-0.23323846E-02

0.84669307E-02

"0.58575041E-02
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COLUMN 21

0.00000000E+00

-0.44285185E-02

0.28275500E-01

-0.29849041E-01

0.26644261E+00

0.31197621E+00

-0.62001030E+00

-0.33854901E+00

0.13846525E+00

0 68142928E-01

0 12490886E-01

-0 46131715E+00

0 40896632E-01

0 73799009E-01

-0 19334825E+00

0 48746786E-01

-0 42274938E+00

-0 22187292E-01

0 61127080E-01

0 58981436E-01

0 10834181E+02

0 46900440E-02

0.19469292E-01

0.28586230E-01

-0.10541929E-01

0.39164821E-01

0.25315755E-01

0.12088164E-01

0.12604543E-01

0.29716983E-02

0.11211752E-01

-0.57275830E-02

D (cont.)

COLUMN 22

0.00000000E+00

-0.12790714E-02

-0.85951736E-01

-0.14795521E-01

0.41561674E+00

-0.28632101E-01

-0.45102015E-01

0.28867957E+00

-0.39504416E-01

-0.11416819E-01

-0.12462226E-01

0.17083517E+00

0.12982190E-01

0.16254822E-01

0.72721887E-01

0.30819071E-01

0.17262835E+00

-0.17140204E-01

-0.72709889E-03

0.76215948E-02

0 46900440E-02

0 64142488E+01

-0 30617007E-02

-0 19744084E-02

0 77237708E-02

-0 30440835E-02

0 88654574E-03

-0 11276379E°01

-0 42606329E-02

-0 24543676E-02

0 61270179E-02

0 33274696E-03
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COLUMN 23

0.00000000E+00

0.55117068E-02

0.21295666E-01

0.14956000E-01

-0.15645428E+00

0.64868177E-01

-0.87211122E+00

0.38778673E+00

0.35573213E-01

0.17864543E-02

-0.37135533E-01

0.16030759E+00

0.41223744E-02

0.35229546E-02

0.79846718E-01

0.95363647E-02

0.17695749E+00

0.13701167E-01

0.95513142E-01

0.83543967E-02

0.19469292E-01

-0.30617007E-02

0.25671157E+02

0.29515948E-01

-0.24960413E-01

0.25441613E-01

0.24600951E-01

0.23453207E-01

0.16188069E-01

0.17449714E-01

0.18721351E-01

-0.32100371E-02

COLUMN 24

0.00000000E+00

0.49177136E-02

0.12023530E-01

0.17493581E-01

0.32889958E701
0.57_2:_48E-01

-0.79801809E+00

-0.36409171E+00

0.28113839E-01

0.10437037E-02

0.38392645E+00

0.19176870E-01

0.23484288E-02

0.10099643E-01

-0.56778261E-03

0.27744150E+00

-0.96432706E-01

0.28672262E-02

0.81767175E-01

0.24991558E-01

0.28586230E-01

-0.19744084E-02

0.29515948E-01

0.33720614E+02

-0 15423285E-01

0 23888779E-01

0 32265721E-01

0 14168221E-01

0 17540870E-01

0 81803915E-02

0 14496870E-01

-0 48483373E-02
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COLUMN 25

0.00000000E+00

-0.29948857E-02

-0.59774351E-03

-0.16677566E-01

0.23777302E+00

-0.95528736E-01

0.43881264E+00

-0.18151580E+00

-0.54853196E-01

-0.14719426E-01

0.12300764E+00

-0.12470831E+00

-0.54044759E-02

-0_87549399E-02

0.80833998E-01

-0.I0049172E+00

0.51517417E-01

-0.80333715E-02

-0.50771260E-01

-0.47790429E-02

-0.I0541929E-01

0.77237708E-02

-0.24960413E-01

-0.15423285E-01

0.20382429E+02

-0.14954188E-01

-0.12104470E-01

-0.14647226E-01

-0.97343984E-02

-0.II150663E-01

-0.83910502E-02

0.18330651E-02

COLUMN 26

O.O0000000E+O0

-0.14402934E-02

0.75244409E-01

-0.19920489E-01

0.34280941E-01

0.20981601E+00

-0.61539617E+00

-0.57432491E-01

0.I0141112E+00

0.45318810E-01

-0.14449470E+00

-0.40677658E+00

0.22753506E-01

0.39915611E-01

0.76403008E-01

-0.20222029E+00

-0.27942107E+00

-0.28513859E-02

0.64867992E-01

0.35163388E-01

0.39164821E-01

-0.30440835E-02

0.25441613E-01

0.23888779E-01

-0.14954188E-01

0.97639583E+01

0.19895722E-01

0.19835065E'01

0.12281662E-01

0.77095768E-02

0.11095041E-01

-0.42973248E-02

(cont.)
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COLUMN 27

0.00000000E+00

0.41919961E-02

0.[I070899E-01

0. 6046914E-01

0.[0500231E+00

0.35996553E-01

-0.70732005E+00

-0.40794111E+00

0.15223052E-01

-0.38758805E-02

0.14485717E+00

0.27913999E+00

0.25088608E-02

0.72564018E-02

-0.17002760E+00

0.20884561E+00

0.10240079E+00

0.23886979E-02

0 70136334E-01

0 24255339E-01

0 25315755E-01

0 88654574E-03

0 24600951E-01

0 32265721E-01

-0 12104470E-01

0 19895722E-01

0 37279276E+02

0 I1464226E-01

0 13422882E-01

0 66444198E-02

0.15171810E-01

-0.40760473E-02

COLUMN 28

O.O0000000E+O0

0.25716347E-02

0.12172107E+00

-0.56398774E-02

-0.19630530E+00

0.36223743E-01

-0.45103535E+00

0.94898692E-01

0.31926880E-01

0.71467195E-02

-0.29959442E+00

-0.14613640E+00

-0.40491722E-02

-0.97596100E-02

0.66721161E-01

-0.33867808E+00

0.39084788E-01

0.19677161E-01

0.50279996E-01

0.36738538E-02

0.12088164E-01

-0.11276379E-01

0.23453207E-01

0.14168221E-01

-0.14647226E-01

0.19835065E-01

0.11464226E-01

0.88614906E+01

0.82428871E-02

0.98257913E-02

0.84183435E-02

-0.16614473E-02
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COLUMN 29

0.00000000E+00

0.27459402E-02

-0.60432359E-03

0.99205552E-02

-0.87896274E-01

0.51784136E-01

-0.37508757E+00

-0.99071555E-01

0.28164514E-01

0.71098133E-02

0.32745084E+00

-0.15140199E+00

0.10790900E-02

0.75798611E-02

0.20586809E+OO

0.28864774E-01

-0.14542906E-01

0.18675985E-02

0.41372769E-01

0.91801472E-02

0.12604543E-01

-0.42606329E-02

0.16188069E-01

0.17540870E-01

-0.97343984E-02

0.12281662E-01

0.13422882E-01

0.82428871E-02

0.30623530E+02

0.48475420E-02

0.49900730E-02

-0.26324657E-02

D (cont.)

COLUMN 30

0.00000000E+00

0.25603561E-02

0.12025279E-01

0.42554055E-02

-0.12577410E+00

0.18310980E-01

-0.29766037E+00

0.29100065E+00

0.13172814E-01

-0.10428367E-03

-0.10696807E+00

0.21277751E+00

0.10092969E-02

-0.32293414E-02

-0.86320AAIE-01

0.16211056E+00

-0.30294206E-01

0.84882084E-02

0.33846094E-01

-0.23323846E-02

0.29716983E-02

-0.24543676E-02

0.17449714E-01

0.81803915E-02

-0.11150663E-01

0.77095768E-02

0.66444198E-02

0.98257913E-02

0.48475420E-02

0.23633730E+02

0.69464732E-02

-0.25868390E-03

181

COLUMN 31

0.00000000E+O0

0.14789512E-02

0.93794112E-03

0.83025561E-02

0.I1545757E+00

-0.39317319E-03

-0.45606966E+00

0.I1889891E+00

-0.63385091E-02

-0.94073005E-02

-0.24077618E+00

0.36562724E+00

0.37383120E-02

0.16135216E-02

-0.42874246E-O1

-0.11747420E+00

0.26915315E+00

0.35098953E-02

0.45614584E-01

0.84669307E-02

0.I1211752E-01

0.61270179E-02

0.18721351E-01

0.14496870E-01

-0.83910502E-02

0.II095041E-01

0.15171810E-01

0.84183435E-02

0.49900730E-02

0.69464732E-02

0.41428718E+02

-0.14946290E-02

COLUMN 32

0.O0000000E+O0

0.I0151803E-03

0.60223775E-02

-0.48136680E-02

-0.11093549E-01

-0.28989149E-01

0.96217342E-01

0.89167638E-01

-0.13191413E-01

-0.47703679E-02

-0.33957402E-01

0.10633908E+00

-0.22085961E-02

-0.68611338E-02

-0.72876769E-01

0.13157002E+00

-0.86057467E-01

0.18750037E-02

-0.I0110822E-01

-0.58575041E-02

-0.57275830E-02

0.33274696E-03

-0.32100371E-02

-0.48483373E-02

0.18330651E-02

-0.42973248E-02

-0.40760473E-02

-0.16614473E-02

-0.26324657E-02

-0.25868390E-03

-0.14946290E-02

0.22006422E+02
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COLUMN i

0.21661648E+05

0.38525240E+04

-0.75452277E+04

-0.31339031E+04

0.33884648E+04

0.20649768E+04

0.15763914E+04

-0.61666046E+03

0.39802456E+05

-0.59800629E+05

-0.16757605E+04

-0.49048947E+03

0.15133825E+01

-0.32378475E+05

-0.13074169E+04

-0.19648788E+04

-0.10924042E+04

0.33168790E+05

-0.80425386E+04

0.26973742E+05

0.28153099E+05

-0.38595127E+05

-0.84523047E+04

-0.68899534E+04

-0.97249078E+04

0.29922439E+05

-0.63792202E+04

0.31762190E+05

-0.73678266E+04

-0.86803842E+04

-0.58735051E+04

-0.87720668E+04

Table D.6
RMS Weighting Matrix _RMS

COLUMN 2

0.38525240E+04

0 16185685E+05

0 42800883E+03

-0 63298086E+04

0 76829167E+04

0 14744351E+05

0 15295111E+04

0 32088046E+05

0 25140537E+05

-0 59762348E+04

0 35051176E+04

0 18608633E+01

0 I1767824E+04

-0 58816611E+04

0 20302772E+04

0 25843001E+04

0 18124357E+04

0 18628003E+04

-0 39023116E+04

-0 18846468E+05

-0 13843846E+05

-0 23618456E+05

-0 57319224E+04

-0 37300713E+03

-0 I1599333E+05

-0 88746053E+04

0 I0891202E+04

-0.35730364E+04

-0.19676778E+04

-0.74921923E+04

0.24010430E+04

-0.89831921E+04

COLUMN 3

-0.75452277E+04

0.42800883E+03

0.73720163E+05

-0.77189888E+04

-0.I0089972E+05

0.18577737E+05

-0.29302618E+04

-0.13355857E+04

-0.41391739E+05

-0.52952185E+05

-0.19784647E+04

-0.14624230E+04

-0.38391867E+00

0.57257529E+05

-0.67285070E+03

-0.81704179E+03

-0.I0061082E+04

-0.59979992E+05

0.64484834E+04

-0.13817635E+05

-0.29404122E+05

0.35472053E+05

0.35868363E+04

0.75533207E+04

-0.99776882E+04

-0.43646534E+05

0.63071289E+04

-0.54578073E+05

0.75143206E+04

-0.26756527E+03

0.41107252E+04

-0.43152696E+04
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COLUMN 4

-0.31339031E+04

-0.63298086E+04

-0.77189888E+04

0.15984954E+05

-0.23654820E+04

-0.19409698E+05

0.17482218E+04

-0.18444160E+03

-0.I1382489E+05

0.68033214E+05

-0.13483292E+03

0.I1385155E+04

-0.92600441E+00

-0.12332910E+05

0.31563402E+03

-0.21659067E+03

0.73642790E+03

0.18414489E+05

-0.19938900E+04

0.24725786E+05

0.26215824E+05

0.12416932E+05

0.71809721E+03

-0.54449434E+04

0.I0297910E+05

0.25917274E+05

-0.62831538E+04

0.23315627E+05

-0.39239651E+04

0.36442780E+04

-0.64609785E+04

0.63450540E+04
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COLUMN 5

0.33884648E+04

0.76829167E+04

-0.I0089972E+05

-0.23654820E+04

0.13569239E+07

0.26915783E+03

0.34126847E+04

-0.65147272E+03

0.46981148E+05

0.12243293E+04

0.19169076E+04

0.19595549E+04

0.84344081E+00

-0.42113691E+05

0.84651169E+03

0.I_6_8876E+04

0.15049361E+04

0.36464201E+05

0.16620742E+05

-0.38019844E+05

-0.28028571E+05

-0.38246642E+05

0.18661653E+05

0.20145246E+04

-0.24224728E+05

-0.49684220E+04

-0.48636649E+04

0.18923882E+05

0.I0274277E+05

0.13005011E+05

-0.83883978E+04

0.55483557E+03

_RMS (cont.)

COLUMN 6

0.20649768E+04

0.14744351E+05

0.18577737E+05

-0.!9409698E+05

0.26915783E+03

0.28749350E+06

-0.17592564E+04

-0.12800686E+04

-0.35253662E+06

-0.18319527E+06

0.36700932E+04

-0.54617535E+03

0.26222226E+01

-0.16739588E+06

0.54123216E+03

0.22062986E+04

0.14253753E+03

0.56152033E+05

-0.62934175E+04

-0.76829928E+05

-0.64898906E+05

0.21130505E+04

-0.43907381E+04

-0.38991393E+04

0.13049357E+05

-0.40995970E+05

-0.67345882E+03

-0.24008828E+04

-0.61074252E+04

-0.14337242E+03

0.26520623E+04

0.50615705E+04
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COLUMN 7

0.15763914E+04

0.15295111E+04

-0.29302618E+04

0.17482218E+04

0.34126847E+04

-0.17592564E+04

0.38489251E+06

0.19746300E+03

-0.I1308487E+04

-0.18688072E+05

-0.13406687E+04

-0.93950599E+02

0.77464873E-01

-0.51665287E+04

0.I0673600E+04

0.29993679E+03

-0.25534632E+02

0.13138152E+05

0.I0582877E+06

0.15469741E+05

0.24613692E+05

0.61871963E+03

0.42439347E+05

0.38981838E+05

-0.21925167E+05

0.26361035E+05

0.34541855E+05

0.21556630E+05

0.18484255E+05

0.14672135E+05

0.21670700E+05

-0.46023407E+04

COLUMN 8

-0.61666046E+03

0.32088046E+04

-0.13355857E+04
I 1.11.1-0._8_._6vE+03

-0.65147272E+03

"0.12800686E+04

0.19746300E+03

0.92491539E+04

0.68022070E+04

-0.17114507E+04

0.15307199E+04

-0.17609535E+04

0.26727715E+00

-0.33703391E+04

0.68850100E+03

0.26726608E+04

0.15855482E+03

-0.15393100E+03

-0.43736730E+04

0.14296930E+05

0.70621300E+04

"0.83606924E+04

-0.82067041E+04

0.II047901E+05

0.33990648E+04

0.89353054E+03

0.I1930430E+05

"0.16367580E+04

0.34770222E+04

"0.67605737E+04

-0.25447058E+04

"0.24417456E+04
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COLUMN 9

0.39802456E+05

0.25140537E+05

-0.41391739E+05

-0,!1382489E+05

0.46981148E+05

-0.35253662E+06

-0.11308487E+04

0.68022070E+04

0.87441423E+07

-0.84824935E+05

0.35574521E+04

0.34045331E+03

0.10812865E+01

-0.72118009E+05

0.18509765E+04

0.64940103E+03

0.84735737E+03

0.20283186E+05

-0.29904857E+04

-0.35613537E+05

-0.31358306E+05

0.65583747E+04

-0.22567532E+04

-0.13539985E+04

0.73283634E+04

-0.22080515E+05

0.35252806E+03

-0.58440719E+04

-0.26652054E+04

-0.16208174E+03

0.20170207E+04

0.26605580E+04

QRMS

COLUMN i0

-0.59800629E+05

-0.59762348E+05

-0.52952185E+05

0.680332!4E+05

0.12243293E+04

-0.18319527E+06

-0.18688072E+05

-0.17114507E+04

-0.84824935E+05

0.98137606E+06

-0.37947728E+04

-0.99548143E+03

0.85323219E+00

-0.39636577E+05

-0.12107795E+04

0.I0522393E+03

-0.51398334E+03

0.I1476672E+05

0.95510672E+02

-0.20819743E+05

-0.18332189E+05

-0.20947290E+04

-0.10555034E+04

0.I1277924E+03

0.24101079E+03

-0.12774839E+05

0.96485357E+03

-0.33165615E+04

-0.10551613E+04

-0.I0441553E+04

0.15625534E+04

-0.61429434E+03
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(cont.)

COLUMN ii

-0.16757605E+04

0.35051176E+04

-0.19784647E+04

-0 !3483292E+03

0 19169076E+04

0 36700932E+04

-0 13406687E+04

0 15307199E+04

0 35574521E+04

-0 37947728E+04

0 36467003E+07

0 74163758E+03

-0.28704662E-01

-0.35458265E+04

-0.85290661E+03

0.81330080E+03

0.17746050E+04

0.58140860E+04

-0.12252649E+04

-0.92116267E+03

-0.86273418E+03

-0.22343039E+03

0.16605991E+04

-0.49554995E+04

-0.26775183E+04

0.20702103E+04

-0.13832169E+04

0.51092518E+04

-0.45364957E+04

0.20976610E+04

0.40854281E+04

0.42728576E+03

COLUMN 12

-0.49048947E+03

0.18608633E+04

-0.14624230E+04

0.I1385155E+04

0.19595549E+04

-0.54617535E+03

-0.93950599E+02

-0.17609535E+04

0.34045331E+03

-0.99548143E+03

0.74163758E+03

0.72723435E+04

0.I0234946E+00

0.67051383E+03

0.16151211E+03

-0.15755282E+04

-0.15323448E+03

-0.41504135E+03

0.90949868E+03

0.17850871E+04

0.39773090E+04

-0.18791010E+04

-0.I0210176E+04

0.41495882E+03

0.84774463E+03

0.37313467E+04

-0.21960748E+04

0.15907278E+04

0.17914747E+04

-0.18840941E+04

-0.33742693E+04

-0.II047643E+04
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COLUMN 13

0.15133825E+01

0.I1767824E+01

-0.38391867E+00

-0.92600A41E+O0

0.84344081E+00

0.26222226E+01

0.77464873E-01

0.26727715E+00

0.I0812865E+01

0.85323219E+00

-0.28704662E-01

0.I0234946E+00

0.16067753E+08

0.68965963E+00

-0.17055182E-01

0.34038498E-01

-0.56773481E-02

-0.28380992E+00

0.18054568E-01

0.29994915E+00

0.23927313E+00

0.14242279E+O0

0.20355781E-01

0.14218562E-01

0.I0651009E-01

0.12351462E+00

0.53016809E-02

-0.47476688E-01

0.22283022E-01

0.16331890E-01

-0.18393382E-02

0.I1653226E-01

QRMS

COLUMN 14

-0.32378475E+05

-0.58816611E+04

0.57257529E+05

-0.12332910E+05

-0.42113691E+05

-0.16739588E+06

-0.51665287E+04

-0.33703391E+04

-0.72118009E+05

-0.39636577E+05

-0.35458265E+04

0.67051383E+03

0 68965963E+00

0 99921841E+06

-0 18340978E+04

0 64310169E+03

-0 32644678E+03

0 18439265E+05

-0 83393824E+03

-0 16781522E+05

-0 12787450E+05

-0.44255456E+04

-0.50256629E+03

-0.12381570E+04

0.19331134E+04

-0.56911099E+04

-0.72636933E+03

0.44752526E+04

-0.15241418E+04

0.26908522E+03

-0.83987229E+02

0.I0215750E+04
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(cont.)

COLUMN 15

-0.13074169E+04

0.20302772E+04

-0.67285070E+03

0.31563402E+03

0.84651169E+03

0.54123216E+03

0.I0673600E+04

0.68850100E+03

0.18509765E+04

-0.12107795E+04

-0.85290661E+03

0.16151211E+03

-0.17055182E-01

-0.18340978E+04

0.26326487E+08

0.12140876E+04

-0.19675054E+04

0.I1295893E+04

-0.14142505E+04

0.29804464E+04

0.99172934E+03

-0.61915371E+03

-0.21321428E+03

0.28763950E+03

-0.74895872E+03

-0.58119788E+03

0.13440624E+04

-0.29021851E+03

-0.I1773263E+04

0.68232013E+03

0.36509563E+03

0.44311344E+03

COLUMN 16

-0.19648788E+04

0.25843001E+04

-0.81704179E+03

-0.2!659067E+03

0.I0678876E+04

0.22062986E+04

0.29993679E+03

0.26726608E+04

0.64940103E+03

0.10522393E+03

0.81330080E+03

-0.15755282E+04

0.34038498E-01

0.64310169E+03

O.12140876E+04

0.80702642E+04

0.29364986E+03

0.78784043E+03

0.67904528E+03

-0.32277578E+02

-0.19039027E+03

-0.19267310E+03

0.18563009E+03

-0.10410356E+04

0 27735932E+03

0 96755006E+03

-0 78179518E+03

0 16158577E+04

-0 17868520E+02

-0 62143286E+03

0.56612541E+03

-0.60204544E+03
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COLUMN 17

-0.I0924042E+04

0.18124357E+04

-0.I0061082E+04

0.73642790E+03

0.15049361E+04

0.14253753E+03

-0.25534632E÷02

0.15855482E÷03

0.84735737E÷03

-0.51398334E+03

0.17746050E÷04

-0.15323448E÷03

-0.56773478E-02

-0.32644678E+03

-0.19675054E+04

0.29364986E+03

0.35621277E+07

-0.25712598E÷03

-0.50120906E+03

0.44080639E÷03

0.12242171E÷04

-0.53922483E÷03

-0.40227247E÷03

0.46520843E+03

-0.25195794E÷03

0 81211705E+03

-0 16437525E+03

-0 10801451E+03

0 12808132E+03

0 13973216E+03

-0 77110823E+03

0 24378655E+03

0

0

-0

0

0

0

0

-0

0

0

0

-0

-0

0

0

0

-0

0

-0

0

O.

O.

"0.

O.

"0.

"0.

O.

"0.

O.

"0.

O.

-0.

_RMS (cont.)

COLUMN 18

33168790E+05

18628003E+04

59979992E+05

18414489E+05

36464201E+05

56152033E+05

13138152E+05

15393100E+05

20283186E+05

I1476672E+05

58140860E+04

41504135E+03

28380992E+00

18439265E+05

I1295893E+04

78784043E+03

25712598E+03

I0316726E+07

84401510E+03

47124623E+04

23714914E+04

44499264E+04

43473532E+03

49209054E+03

15757691E+03

I1485931E+04

46257303E+03

54541836E+04

61212617E+03

43604395E+03

33631283E+03

37028147E+03
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COLUMN 19

-0.80425386E+04

-0.39023116E+04

0.64484834E+04

-O._99J89uuE+u4

0.16620742E+05

-0.62934175E+04

0.10582877E+06

-0.43736730E+04

-0.29904857E+04

0.95510672E+02

-0.12252649E+04

0.90949868E+03

0.18054568E-01

-0.83393824E+03

-0.14142505E+04

0.67904528E+03

-0.50120906E+03

-0.84401510E+03

0.37232998E+07

-0.13146381E+04

-0.22447790E+04

-0.21214763E+02

-0.49036251E+04

-0.41928963E+04

0.27595753E+04

-0.25151531E+04

-0.35627571E+04

-0.19937378E+04

-0.22550865E+04

-0.18538256E+04

-0.21698960E+04

0.44002652E+03

COLUMN 20

0.26973742E+05

-0.18846468E+05

-0.13817635E+05

0.24725786E+05

-0.38019844E+05

-0.76829928E+05

0.15469741E+05

0.14296930E+05

-0.35613537E+05

-0.20819743E+05

-0.92116267E+03

0.17850871E+04

0.29994915E+00

-0.16781522E+05

0.29804464E+04

-0.32277578E+02

0.44080639E+03

0.47124623E+04

-0.13146381E+04

0.10304700E+07

-0.I0390966E+05

-0.33402292E+03

-0.15221490E+03

-0.65727563E+03

0.32855386E+03

-0.71580342E+04

-0.49798831E+03

-0.22117591E+04

-0.21536638E+03

0.31592629E+03

0.II090946E+03

0.46265890E+03
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COLUMN 21

0.28153099E+05

-0.13843846E+05

-0.29404122E+05

0.26215824E+05

-0.28028571E+05

-0.64898906E+05

0.24613692E+05

0.70621300E+04

-0.31358306E+05

-0.18332189E+05

-0.86273418E+03

0.39773090E+04

0.23927313E+00

-0.12787450E+05

0.99172934E+03

-0.19039027E+03

0.12242171E+04

0.23714914E+04

-0.22447790E+04

-0.10390966E+05

0 44644369E+08

0 65283922E+03

-0 61598256E+03

-0 76001766E+03

0 49727893E+03

-0 74051533E+04

-0 55403874E+03

-0.34573628E+04

-0.23288889E+03

0.54712620E+02

0.13733404E+02

0.39114062E+03

_R.HS (cont.)

COLUMN 22

-0.38595127E+05

-0.23618456E+05

0.35472053E+05

O. 1_/.1_6932E+05

-0.38246642E+05

0.21130505E+04

0.61871963E+03

-0.83606924E+04

0.65583747E+04

-0.20947290E+04

-0.22343039E+03

-0.18791010E+04

0.14242279E+00

-0.44255456E+04

-0 61915371E+03

-0 19267310E+03

-0 53922483E+03

0 44499264E+04

-0 21214763E+02

-0 33402292E+03

0 65283922E+03

0 I0372341E+07

0 46859980E+02

-0 30958148E+03

-0.13404078E+04

0.21068440E+04

-0.46696431E+03

0.35011523E+04

-0.I1554135E+03

-0.I0985390E+03

-0.59541188E+03

-0.48425790E+03
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COLUMN 23

-0.84523047E+04

-0.57319224E+04

0.35868363E+04

0.71809721E+03

0.18661653E+05

-0.43907381E+04

0.42439347E+05

-0.82067041E+04

-0.22567532E+04

-0.I0555034E+04

0.16605991E+04

-0.I0210176E+04

0.20355780E-01

-0.50256629E+03

-0.21321428E+03

0.18563009E+03

-0.40227247E+03

-0.43473532E+03

-0.49036251E+04

-0.15221490E+03

-0.61598256E+03

0.46859980E+02

0.70097579E+08

-0.16709421E+04

0.13475934E+04

-0.93516312E+03

-0.13244361E+04

-0.88704891E+03

-0.I0525075E+04

-0.I0255205E+04

-0.80893019E+03

0.77958127E+02

COLUMN 24

-0.68899534E+04

-0.37300713E+03

0.75533207E+04

-0.54449434E+04

0.20145246E+04

-0.38991393E+04

0.38981838E+05

0.II047901E+05

-0.13539985E+04

0.I1277924E+03

-0.49554995E+04

0.41495882E+03

0.14218562E-01

-0.12381570E+04

0.28763950E+03

-0.I0410356E+04

0.46520843E+03

0.49209054E+03

-0.41928963E+04

-0.65727563E+03

-0.76001766E+03

-0.30958148E+03

-0.16709421E+04

0.I0404222E+07

0.96204069E+03

-0.55528984E+03

-0.15736160E+04

-0.I0147026E+03

-0.94465826E+03

-0.54704376E+03

-0.85392324E+03

0.23070946E+03
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COLUMN 25

-0 97249078E+04

-0 I1599333E+05

-0 99776882E+04

0 10297910E+05

-0 24224728E+05

0 13049357E+05

-0 21925167E+05

0 33990648E+04

0 73283634E+04

0 24101079E+03

-0 26775183E+04

0 84774463E+03

0 I0651009E-01

0 19331134E+04

-0 74895872E+03

0 27735932E+03

-0 25195794E+03

-0 15757691E+03

0 27595753E+04

0 32855386E+03

0 49727893E+03

-0 13404078E+04

0.13475934E+04

0.96204069E+03

0.41011513E+07

0.65915011E+03

0.67572014E+03

0.50431535E+03

0.73626096E+03

0.45222009E+03

0.31978510E+03

-0.44914860E+03

_RMS

COLUMN 26

O. 29922439E+05

-0. 88746053E+04

-0. 43646534E+05

O. 25917274E+05

-0. 49684220E+04

-0.40995970E+05

0. 2636 I035E+05

0. 89353054E+03

-0. 22080515E+05

-0. 12774839E+05

0. 20702103E+04

0. 37313467E+04

0. 12351462E+00

-0.56911099E+04

-0.58119788E+03

0. 96755006E+03

0. 81211705E+03

-0. 11485931E+04

-0.25151531E+04

-0.71580342E+04

-0. 74051533E+04

0. 21068440E+04

-0.93516312E+03

-0. $3"___984E+03

0.65915011E+03

0. I0355788E+07

-0. 31820074E+03

-0.46476468E+04

-0. 14936950E+03

-0. 25037656E+03

0. I0298729E+03

0. 22586724E+03
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COLUMN 27

-0.63792202E+04

0.I0891202E+04

0.63071289E+04

-0.62831538E+04

-0.48636649E+04

-0.67345882E+03

0.34541855E+05

0.I1930430E+05

0.35252806E+03

0.96485357E+03

-0.13832169E+04

-0.21960748E+04

0.53016809E-02

-0.72636933E+03

0.13440624E+04

-0 78179518E+03

-0 16437525E+03

0 46257303E+03

-0 35627571E+04

-0 49798831E+03

-0 55403874E+03

-0 46696431E+03

-0 13244361E+04

-0 15736160E+04

0 67572014E+03

-0 31820074E+03

0 49078001E+07

0 70493740E+02

-0 73848529E+03

-0 38313606E+03

-0.84992516E+03

0.20839052E+03

COLUMN 28

0.31762190E+05

-0.35730364E+04

-0.54578073E+05

0.23315627E+05

0.18923882E+05

-0.24008828E+04

0.21556630E+05

-0.16367580E+04

-0.58440719E+04

-0.33165615E+04

0.51092518E+04

0.15907278E+04

-0.47476688E-01

0.44752526E+04

-0.29021851E+03

0.16158577E+04

-0.I0801451E+03

-0.54541836E+04

-0.19937378E+04

-0.22117591E+04

-0.34573628E+04

0.35011523E+04

-0.88704891E+03

-0.I0147026E+03

0.50431535E+03

-0.46476468E+04

0.70493740E+02

0.I0368178E+07

0.12439416E+03

-0.43295329E+03

0.25511736E+03

-0.24677426E+02



_RMS(cont.)

COLUMN 29

-0.73678266E+04

-0.19676778E+04

0.75143206E+04

-0.39239651E+04

0.I0274277E+05

-0.61074252E+04

0.18484255E+05

0.34770222E+04

-0.26652054E+04

-0.10551613E+04

-0.45364957E+04

0.17914747E+04

0.22283022E-01

-0.15241418E+04

-0.11773263E+04

-0.17868520E+02

0.12808132E+03

0.61212617E+03

-0.22550865E+04

-0.21536638E+03

-0.23288889E+03

-0.11554135E+03

-0.10525075E+04

-0.94465826E+03

0.73626096E+03

-0.14936950E+03

-0.73848529E+03

0.12439416E+03

0.10590426E+09

-0.42401925E+03

-0.34753618E+03

0.I0451572E+03

COLUMN 30

-0.86803842E+04

-0.74921923E+04

-0.26756527E+03

0.36442780E+04

0.13005011E+05

-0.14337242E+03

0.14672135E+05

-0.67605737E+04

-0.16208174E+03

-0.I0441553E+04

0.20976610E+04

-0.18840941E+04

0.16331890E-01

0.26908522E+03

0.68232013E+03

-0.62143286E+03

0.13973216E+03

-0.43604395E+03

-0.18538256E+04

0.31592629E+03

0.54712620E+02

-0.I0985390E+03

-0.I0255205E+04

-0.54704376E+03

0.45222009E+03

-0.25037656E+03

-0.38313606E+03

-0.43295329E+03

-0.42401925E+03

0.I0416424E+07

-0.24371751E+03

-0.12203261E+03

COLUMN 31

-0.58735051E+04

0.24010430E+04

0.41107252E+04

-0.64609785E+04

-0.83883978E+04

0.26520623E+04

0.21670700E+05

-0.25447058E+04

0.20170207E+04

0.15625534E+04

0.40854281E+04

-0.33742693E+04

-0.18393382E-02

-0.83987229E+02

0.36509563E+03

0.56612541E+03

-0.77110823E+03

0.33631283E+03

-0.21698960E+04

0.II090946E+03

0.13733404E+02

-0.59541188E+03

-0.80893019E+03

-0.85392324E+03

0.31978510E+03

0.I0298729E+03

-0.84992516E+03

0.25511736E+03

-0.34753618E+03

-0.24371751E+03

0.15494838E+09

0.10177042E+03

COLUMN 32

-0.87720668E+04

-0.89831921E+04

-0.43152696E+04

0.63450540E+04

0.55483557E+03

0.50615705E+04

-0.46023407E+04

-0.24417456E+04

0.26605580E+04

-0.61429434E+03

0.42728576E+03

-0.II047643E+04

0.I1653226E-01

0.I0215750E+04

0.44311344E+03

-0.60204544E+03

0.24378655E+03

-0.37028147E+03

0.44002652E+03

0.46265890E+03

0.39114062E+03

-0.48425790E+03

0.77958127E+02

0.23070946E+03

-0.44914860E+03

0.22586724E+03

0 20839052E+03

-0 24677426E+02

0 I0451572E+03

-0 12203261E+03

0 I0177042E+03

0 I0419420E+07
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sensitivity minimization .................. 3, 50

SISO interpretation ...................... 58
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model reduction ........................ 2, 81

approximate balanced singular value .............. 83

compensator order ....................... 74

modal truncation ........................ 82
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numerical considerations .................... 163

Nyquist criterion ...................... 19, 158

performance ........................... i, 3

phase margin ........................... 94

pointing error .......................... 99
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principal gain/phase ...................... 157

relative uncertainties ...................... 17

return difference ..................... 7, 16, 21
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